test_stable_diffusion_sag.py 6.25 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    StableDiffusionSAGPipeline,
    UNet2DConditionModel,
)
29
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch_gpu, torch_device
30

31
32
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
33
34


35
enable_full_determinism()
36
37


38
class StableDiffusionSAGPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
39
    pipeline_class = StableDiffusionSAGPipeline
40
41
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
42
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
43
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
96
            "image_encoder": None,
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": ".",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 1.0,
            "sag_scale": 1.0,
            "output_type": "numpy",
        }
        return inputs

115
116
117
    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

118

119
@nightly
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
@require_torch_gpu
class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_stable_diffusion_1(self):
        sag_pipe = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        sag_pipe = sag_pipe.to(torch_device)
        sag_pipe.set_progress_bar_config(disable=None)

        prompt = "."
        generator = torch.manual_seed(0)
        output = sag_pipe(
            [prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np"
        )

        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949])

Patrick von Platen's avatar
Patrick von Platen committed
146
        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

    def test_stable_diffusion_2(self):
        sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
        sag_pipe = sag_pipe.to(torch_device)
        sag_pipe.set_progress_bar_config(disable=None)

        prompt = "."
        generator = torch.manual_seed(0)
        output = sag_pipe(
            [prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np"
        )

        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371])

Patrick von Platen's avatar
Patrick von Platen committed
166
        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

    def test_stable_diffusion_2_non_square(self):
        sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
        sag_pipe = sag_pipe.to(torch_device)
        sag_pipe.set_progress_bar_config(disable=None)

        prompt = "."
        generator = torch.manual_seed(0)
        output = sag_pipe(
            [prompt],
            width=768,
            height=512,
            generator=generator,
            guidance_scale=7.5,
            sag_scale=1.0,
            num_inference_steps=20,
            output_type="np",
        )

        image = output.images

        assert image.shape == (1, 512, 768, 3)