test_stable_cascade_decoder.py 11.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import DDPMWuerstchenScheduler, StableCascadeDecoderPipeline
from diffusers.models import StableCascadeUNet
from diffusers.pipelines.wuerstchen import PaellaVQModel
from diffusers.utils.testing_utils import (
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
28
    load_numpy,
29
    load_pt,
Dhruv Nair's avatar
Dhruv Nair committed
30
    numpy_cosine_similarity_distance,
31
32
33
34
35
    require_torch_gpu,
    skip_mps,
    slow,
    torch_device,
)
36
from diffusers.utils.torch_utils import randn_tensor
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class StableCascadeDecoderPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = StableCascadeDecoderPipeline
    params = ["prompt"]
    batch_params = ["image_embeddings", "prompt", "negative_prompt"]
    required_optional_params = [
        "num_images_per_prompt",
        "num_inference_steps",
        "latents",
        "negative_prompt",
        "guidance_scale",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False
    callback_cfg_params = ["image_embeddings", "text_encoder_hidden_states"]

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            projection_dim=self.text_embedder_hidden_size,
            hidden_size=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModelWithProjection(config).eval()

    @property
    def dummy_vqgan(self):
        torch.manual_seed(0)

        model_kwargs = {
            "bottleneck_blocks": 1,
            "num_vq_embeddings": 2,
        }
        model = PaellaVQModel(**model_kwargs)
        return model.eval()

    @property
    def dummy_decoder(self):
        torch.manual_seed(0)
        model_kwargs = {
            "in_channels": 4,
            "out_channels": 4,
            "conditioning_dim": 128,
            "block_out_channels": [16, 32, 64, 128],
            "num_attention_heads": [-1, -1, 1, 2],
            "down_num_layers_per_block": [1, 1, 1, 1],
            "up_num_layers_per_block": [1, 1, 1, 1],
            "down_blocks_repeat_mappers": [1, 1, 1, 1],
            "up_blocks_repeat_mappers": [3, 3, 2, 2],
            "block_types_per_layer": [
                ["SDCascadeResBlock", "SDCascadeTimestepBlock"],
                ["SDCascadeResBlock", "SDCascadeTimestepBlock"],
                ["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
                ["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"],
            ],
            "switch_level": None,
            "clip_text_pooled_in_channels": 32,
            "dropout": [0.1, 0.1, 0.1, 0.1],
        }
        model = StableCascadeUNet(**model_kwargs)
        return model.eval()

    def get_dummy_components(self):
        decoder = self.dummy_decoder
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        vqgan = self.dummy_vqgan

        scheduler = DDPMWuerstchenScheduler()

        components = {
            "decoder": decoder,
            "vqgan": vqgan,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "scheduler": scheduler,
            "latent_dim_scale": 4.0,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "image_embeddings": torch.ones((1, 4, 4, 4), device=device),
            "prompt": "horse",
            "generator": generator,
            "guidance_scale": 2.0,
            "num_inference_steps": 2,
            "output_type": "np",
        }
        return inputs

    def test_wuerstchen_decoder(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

        expected_slice = np.array([0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    @skip_mps
    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=1e-2)

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"
        test_mean_pixel_difference = False

        self._test_attention_slicing_forward_pass(
            test_max_difference=test_max_difference,
            test_mean_pixel_difference=test_mean_pixel_difference,
        )

    @unittest.skip(reason="fp16 not supported")
    def test_float16_inference(self):
        super().test_float16_inference()

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    def test_stable_cascade_decoder_prompt_embeds(self):
        device = "cpu"
        components = self.get_dummy_components()

        pipe = StableCascadeDecoderPipeline(**components)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image_embeddings = inputs["image_embeddings"]
        prompt = "A photograph of a shiba inu, wearing a hat"
        (
            prompt_embeds,
            prompt_embeds_pooled,
            negative_prompt_embeds,
            negative_prompt_embeds_pooled,
        ) = pipe.encode_prompt(device, 1, 1, False, prompt=prompt)
        generator = torch.Generator(device=device)

        decoder_output_prompt = pipe(
            image_embeddings=image_embeddings,
            prompt=prompt,
            num_inference_steps=1,
            output_type="np",
            generator=generator.manual_seed(0),
        )
        decoder_output_prompt_embeds = pipe(
            image_embeddings=image_embeddings,
            prompt=None,
            prompt_embeds=prompt_embeds,
            prompt_embeds_pooled=prompt_embeds_pooled,
            negative_prompt_embeds=negative_prompt_embeds,
            negative_prompt_embeds_pooled=negative_prompt_embeds_pooled,
            num_inference_steps=1,
            output_type="np",
            generator=generator.manual_seed(0),
        )

        assert np.abs(decoder_output_prompt.images - decoder_output_prompt_embeds.images).max() < 1e-5

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    def test_stable_cascade_decoder_single_prompt_multiple_image_embeddings(self):
        device = "cpu"
        components = self.get_dummy_components()

        pipe = StableCascadeDecoderPipeline(**components)
        pipe.set_progress_bar_config(disable=None)

        prior_num_images_per_prompt = 2
        decoder_num_images_per_prompt = 2
        prompt = ["a cat"]
        batch_size = len(prompt)

        generator = torch.Generator(device)
        image_embeddings = randn_tensor(
            (batch_size * prior_num_images_per_prompt, 4, 4, 4), generator=generator.manual_seed(0)
        )
        decoder_output = pipe(
            image_embeddings=image_embeddings,
            prompt=prompt,
            num_inference_steps=1,
            output_type="np",
            guidance_scale=0.0,
            generator=generator.manual_seed(0),
            num_images_per_prompt=decoder_num_images_per_prompt,
        )

        assert decoder_output.images.shape[0] == (
            batch_size * prior_num_images_per_prompt * decoder_num_images_per_prompt
        )

    def test_stable_cascade_decoder_single_prompt_multiple_image_embeddings_with_guidance(self):
        device = "cpu"
        components = self.get_dummy_components()

        pipe = StableCascadeDecoderPipeline(**components)
        pipe.set_progress_bar_config(disable=None)

        prior_num_images_per_prompt = 2
        decoder_num_images_per_prompt = 2
        prompt = ["a cat"]
        batch_size = len(prompt)

        generator = torch.Generator(device)
        image_embeddings = randn_tensor(
            (batch_size * prior_num_images_per_prompt, 4, 4, 4), generator=generator.manual_seed(0)
        )
        decoder_output = pipe(
            image_embeddings=image_embeddings,
            prompt=prompt,
            num_inference_steps=1,
            output_type="np",
            guidance_scale=2.0,
            generator=generator.manual_seed(0),
            num_images_per_prompt=decoder_num_images_per_prompt,
        )

        assert decoder_output.images.shape[0] == (
            batch_size * prior_num_images_per_prompt * decoder_num_images_per_prompt
        )

310
311
312
313
314
315
316
317
318
319
320
321

@slow
@require_torch_gpu
class StableCascadeDecoderPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_stable_cascade_decoder(self):
        pipe = StableCascadeDecoderPipeline.from_pretrained(
Dhruv Nair's avatar
Dhruv Nair committed
322
            "stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16
323
324
325
326
327
328
329
330
331
332
333
334
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        prompt = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background."

        generator = torch.Generator(device="cpu").manual_seed(0)
        image_embedding = load_pt(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_cascade/image_embedding.pt"
        )

        image = pipe(
Dhruv Nair's avatar
Dhruv Nair committed
335
336
337
338
339
            prompt=prompt,
            image_embeddings=image_embedding,
            output_type="np",
            num_inference_steps=2,
            generator=generator,
340
341
        ).images[0]

Dhruv Nair's avatar
Dhruv Nair committed
342
343
344
        assert image.shape == (1024, 1024, 3)
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_cascade/stable_cascade_decoder_image.npy"
345
        )
Dhruv Nair's avatar
Dhruv Nair committed
346
347
        max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten())
        assert max_diff < 1e-4