test_scheduler_ddim_inverse.py 4.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch

from diffusers import DDIMInverseScheduler

from .test_schedulers import SchedulerCommonTest


class DDIMInverseSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (DDIMInverseScheduler,)
    forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1000,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
            "clip_sample": True,
        }

        config.update(**kwargs)
        return config

    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps, eta = 10, 0.0

        model = self.dummy_model()
        sample = self.dummy_sample_deter

        scheduler.set_timesteps(num_inference_steps)

        for t in scheduler.timesteps:
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample, eta).prev_sample

        return sample

    def test_timesteps(self):
        for timesteps in [100, 500, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_steps_offset(self):
        for steps_offset in [0, 1]:
            self.check_over_configs(steps_offset=steps_offset)

        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(steps_offset=1)
        scheduler = scheduler_class(**scheduler_config)
        scheduler.set_timesteps(5)
Patrick von Platen's avatar
Patrick von Platen committed
54
        assert torch.equal(scheduler.timesteps, torch.LongTensor([1, 201, 401, 601, 801]))
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "squaredcos_cap_v2"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(prediction_type=prediction_type)

    def test_clip_sample(self):
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)

    def test_timestep_spacing(self):
        for timestep_spacing in ["trailing", "leading"]:
            self.check_over_configs(timestep_spacing=timestep_spacing)

    def test_rescale_betas_zero_snr(self):
        for rescale_betas_zero_snr in [True, False]:
            self.check_over_configs(rescale_betas_zero_snr=rescale_betas_zero_snr)

    def test_thresholding(self):
        self.check_over_configs(thresholding=False)
        for threshold in [0.5, 1.0, 2.0]:
            for prediction_type in ["epsilon", "v_prediction"]:
                self.check_over_configs(
                    thresholding=True,
                    prediction_type=prediction_type,
                    sample_max_value=threshold,
                )

    def test_time_indices(self):
        for t in [1, 10, 49]:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
            self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)

    def test_add_noise_device(self):
        pass

    def test_full_loop_no_noise(self):
        sample = self.full_loop()

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

107
108
        assert abs(result_sum.item() - 671.6816) < 1e-2
        assert abs(result_mean.item() - 0.8746) < 1e-3
109
110
111
112
113
114
115

    def test_full_loop_with_v_prediction(self):
        sample = self.full_loop(prediction_type="v_prediction")

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

116
117
        assert abs(result_sum.item() - 1394.2185) < 1e-2
        assert abs(result_mean.item() - 1.8154) < 1e-3
118
119
120
121
122
123
124

    def test_full_loop_with_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

125
126
        assert abs(result_sum.item() - 539.9622) < 1e-2
        assert abs(result_mean.item() - 0.7031) < 1e-3
127
128
129
130
131
132
133

    def test_full_loop_with_no_set_alpha_to_one(self):
        # We specify different beta, so that the first alpha is 0.99
        sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

134
135
        assert abs(result_sum.item() - 542.6722) < 1e-2
        assert abs(result_mean.item() - 0.7066) < 1e-3