test_controlnet.py 37.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
17
import tempfile
18
import traceback
19
20
21
22
23
24
25
26
27
28
import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    DDIMScheduler,
29
    EulerDiscreteScheduler,
30
    LCMScheduler,
31
32
33
    StableDiffusionControlNetPipeline,
    UNet2DConditionModel,
)
34
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
35
from diffusers.utils.import_utils import is_xformers_available
36
37
from diffusers.utils.testing_utils import (
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
38
39
    load_image,
    load_numpy,
Dhruv Nair's avatar
Dhruv Nair committed
40
    require_python39_or_higher,
41
42
43
    require_torch_2,
    require_torch_gpu,
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
44
45
    slow,
    torch_device,
46
)
Dhruv Nair's avatar
Dhruv Nair committed
47
from diffusers.utils.torch_utils import randn_tensor
48

49
from ..pipeline_params import (
50
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
51
    TEXT_TO_IMAGE_BATCH_PARAMS,
52
    TEXT_TO_IMAGE_IMAGE_PARAMS,
53
54
    TEXT_TO_IMAGE_PARAMS,
)
55
56
57
58
59
from ..test_pipelines_common import (
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
60
61


62
enable_full_determinism()
63
64


65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Will be run via run_test_in_subprocess
def _test_stable_diffusion_compile(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.to("cuda")
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        pipe.controlnet.to(memory_format=torch.channels_last)
        pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
Dhruv Nair's avatar
Dhruv Nair committed
89
        ).resize((512, 512))
90

Dhruv Nair's avatar
Dhruv Nair committed
91
        output = pipe(prompt, image, num_inference_steps=10, generator=generator, output_type="np")
92
93
        image = output.images[0]

Dhruv Nair's avatar
Dhruv Nair committed
94
        assert image.shape == (512, 512, 3)
95
96
97
98

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out_full.npy"
        )
Dhruv Nair's avatar
Dhruv Nair committed
99
        expected_image = np.resize(expected_image, (512, 512, 3))
100
101
102
103
104
105
106
107
108
109
110

        assert np.abs(expected_image - image).max() < 1.0

    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


111
112
113
class ControlNetPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
114
115
116
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
117
118
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
119

120
    def get_dummy_components(self, time_cond_proj_dim=None):
121
122
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
123
            block_out_channels=(4, 8),
124
125
126
127
128
129
130
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
131
            norm_num_groups=1,
132
            time_cond_proj_dim=time_cond_proj_dim,
133
134
135
        )
        torch.manual_seed(0)
        controlnet = ControlNetModel(
136
            block_out_channels=(4, 8),
137
138
139
140
141
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
142
            norm_num_groups=1,
143
144
145
146
147
148
149
150
151
152
153
        )
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
154
            block_out_channels=[4, 8],
155
156
157
158
159
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
160
            norm_num_groups=2,
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2
        image = randn_tensor(
            (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
            generator=generator,
            device=torch.device(device),
        )

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
            "image": image,
        }

        return inputs

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    def test_controlnet_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionControlNetPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        image = output.images

        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array(
            [0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

248

249
250
251
class StableDiffusionMultiControlNetPipelineFastTests(
    PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
):
252
253
254
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
255
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
256
257
258
259

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
260
            block_out_channels=(4, 8),
261
262
263
264
265
266
267
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
268
            norm_num_groups=1,
269
270
        )
        torch.manual_seed(0)
271
272
273
274
275
276

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
                torch.nn.init.normal(m.weight)
                m.bias.data.fill_(1.0)

277
        controlnet1 = ControlNetModel(
278
            block_out_channels=(4, 8),
279
280
281
282
283
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
284
            norm_num_groups=1,
285
        )
286
287
        controlnet1.controlnet_down_blocks.apply(init_weights)

288
289
        torch.manual_seed(0)
        controlnet2 = ControlNetModel(
290
            block_out_channels=(4, 8),
291
292
293
294
295
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
296
            norm_num_groups=1,
297
        )
298
299
        controlnet2.controlnet_down_blocks.apply(init_weights)

300
301
302
303
304
305
306
307
308
309
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
310
            block_out_channels=[4, 8],
311
312
313
314
315
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
316
            norm_num_groups=2,
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet1, controlnet2])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        images = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
            "image": images,
        }

        return inputs

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

412
413
    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass


class StableDiffusionMultiControlNetOneModelPipelineFastTests(
    PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
):
    pipeline_class = StableDiffusionControlNetPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
449
            block_out_channels=(4, 8),
450
451
452
453
454
455
456
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
457
            norm_num_groups=1,
458
459
460
461
462
463
464
465
466
        )
        torch.manual_seed(0)

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
                torch.nn.init.normal(m.weight)
                m.bias.data.fill_(1.0)

        controlnet = ControlNetModel(
467
            block_out_channels=(4, 8),
468
469
470
471
472
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
473
            norm_num_groups=1,
474
475
476
477
478
479
480
481
482
483
484
485
486
        )
        controlnet.controlnet_down_blocks.apply(init_weights)

        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
487
            block_out_channels=[4, 8],
488
489
490
491
492
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
493
            norm_num_groups=2,
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        images = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
            "image": images,
        }

        return inputs

    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(
            **inputs,
            control_guidance_start=[0.1],
            control_guidance_end=[0.2],
        )[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass


614
615
@slow
@require_torch_gpu
616
class ControlNetPipelineSlowTests(unittest.TestCase):
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_canny(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

637
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
638
639
640
641
642
643
644
645
646

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out.npy"
        )

647
        assert np.abs(expected_image - image).max() < 9e-2
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

    def test_depth(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Stormtrooper's lecture"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png"
        )

664
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
665
666
667
668
669
670
671
672
673

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth_out.npy"
        )

674
        assert np.abs(expected_image - image).max() < 8e-1
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

    def test_hed(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "oil painting of handsome old man, masterpiece"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed.png"
        )

691
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
692
693
694
695
696
697
698
699
700

        image = output.images[0]

        assert image.shape == (704, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed_out.npy"
        )

701
        assert np.abs(expected_image - image).max() < 8e-2
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

    def test_mlsd(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "room"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd.png"
        )

718
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
719
720
721
722
723
724
725
726
727

        image = output.images[0]

        assert image.shape == (704, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd_out.npy"
        )

728
        assert np.abs(expected_image - image).max() < 5e-2
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

    def test_normal(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "cute toy"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal.png"
        )

745
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
746
747
748
749
750
751
752
753
754

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal_out.npy"
        )

755
        assert np.abs(expected_image - image).max() < 5e-2
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771

    def test_openpose(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "Chef in the kitchen"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
        )

772
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
773
774
775
776
777
778
779
780
781

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/chef_pose_out.npy"
        )

782
        assert np.abs(expected_image - image).max() < 8e-2
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

    def test_scribble(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(5)
        prompt = "bag"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble.png"
        )

799
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
800
801
802
803
804
805
806
807
808

        image = output.images[0]

        assert image.shape == (640, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble_out.npy"
        )

809
        assert np.abs(expected_image - image).max() < 8e-2
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

    def test_seg(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(5)
        prompt = "house"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
        )

826
        output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
827
828
829
830
831
832
833
834
835

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg_out.npy"
        )

836
        assert np.abs(expected_image - image).max() < 8e-2
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

    def test_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()

        prompt = "house"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png"
        )

        _ = pipe(
            prompt,
            image,
            num_inference_steps=2,
            output_type="np",
        )

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 4 * 10**9
867

868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
    def test_canny_guess_mode(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = ""
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=3.0,
            guess_mode=True,
        )

        image = output.images[0]
        assert image.shape == (768, 512, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.2724, 0.2846, 0.2724, 0.3843, 0.3682, 0.2736, 0.4675, 0.3862, 0.2887])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
    def test_canny_guess_mode_euler(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = ""
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=3.0,
            guess_mode=True,
        )

        image = output.images[0]
        assert image.shape == (768, 512, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.1655, 0.1721, 0.1623, 0.1685, 0.1711, 0.1646, 0.1651, 0.1631, 0.1494])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Dhruv Nair's avatar
Dhruv Nair committed
933
    @require_python39_or_higher
934
    @require_torch_2
935
    def test_stable_diffusion_compile(self):
936
        run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=None)
937

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
    def test_v11_shuffle_global_pool_conditions(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_shuffle")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "New York"
        image = load_image(
            "https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"
        )

        output = pipe(
            prompt,
            image,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
            guidance_scale=7.0,
        )

        image = output.images[0]
        assert image.shape == (512, 640, 3)

        image_slice = image[-3:, -3:, -1]
        expected_slice = np.array([0.1338, 0.1597, 0.1202, 0.1687, 0.1377, 0.1017, 0.2070, 0.1574, 0.1348])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
    def test_load_local(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
        pipe_1 = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )

        controlnet = ControlNetModel.from_single_file(
            "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"
        )
        pipe_2 = StableDiffusionControlNetPipeline.from_single_file(
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
            safety_checker=None,
            controlnet=controlnet,
        )
        pipes = [pipe_1, pipe_2]
        images = []

        for pipe in pipes:
            pipe.enable_model_cpu_offload()
            pipe.set_progress_bar_config(disable=None)

            generator = torch.Generator(device="cpu").manual_seed(0)
            prompt = "bird"
            image = load_image(
                "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
            )

            output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3)
            images.append(output.images[0])

            del pipe
            gc.collect()
            torch.cuda.empty_cache()

1003
        assert np.abs(images[0] - images[1]).max() < 1e-3
1004

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032

@slow
@require_torch_gpu
class StableDiffusionMultiControlNetPipelineSlowTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_pose_and_canny(self):
        controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
        controlnet_pose = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose")

        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=[controlnet_pose, controlnet_canny]
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "bird and Chef"
        image_canny = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )
        image_pose = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png"
        )

1033
        output = pipe(prompt, [image_pose, image_canny], generator=generator, output_type="np", num_inference_steps=3)
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

        image = output.images[0]

        assert image.shape == (768, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose_canny_out.npy"
        )

        assert np.abs(expected_image - image).max() < 5e-2