train_dreambooth_flax.py 26.7 KB
Newer Older
1
2
3
4
5
6
import argparse
import logging
import math
import os
from pathlib import Path

7
8
import jax
import jax.numpy as jnp
9
import numpy as np
10
import optax
11
12
import torch
import torch.utils.checkpoint
13
14
15
16
import transformers
from flax import jax_utils
from flax.training import train_state
from flax.training.common_utils import shard
17
from huggingface_hub import create_repo, upload_folder
18
from huggingface_hub.utils import insecure_hashlib
19
20
from jax.experimental.compilation_cache import compilation_cache as cc
from PIL import Image
21
from torch.utils.data import Dataset
22
23
from torchvision import transforms
from tqdm.auto import tqdm
24
from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
25
26
27
28
29
30
31
32
33

from diffusers import (
    FlaxAutoencoderKL,
    FlaxDDPMScheduler,
    FlaxPNDMScheduler,
    FlaxStableDiffusionPipeline,
    FlaxUNet2DConditionModel,
)
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
34
from diffusers.utils import check_min_version
35
36


37
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
38
check_min_version("0.24.0.dev0")
39

40
41
42
# Cache compiled models across invocations of this script.
cc.initialize_cache(os.path.expanduser("~/.cache/jax/compilation_cache"))

43
44
45
46
47
48
49
50
51
52
53
54
logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
55
56
57
58
59
60
61
62
63
64
65
66
67
    parser.add_argument(
        "--pretrained_vae_name_or_path",
        type=str,
        default=None,
        help="Path to pretrained vae or vae identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        help="The prompt with identifier specifying the instance",
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
112
113
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
114
115
116
117
118
119
120
121
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
122
    parser.add_argument("--save_steps", type=int, default=None, help="Save a checkpoint every X steps.")
123
124
125
126
127
128
129
130
131
132
133
    parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
patil-suraj's avatar
patil-suraj committed
134
135
136
137
138
139
140
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    )
    parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.instance_data_dir is None:
        raise ValueError("You must specify a train data directory.")

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")

    return args


class DreamBoothDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
233
        class_num=None,
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        size=512,
        center_crop=False,
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
            raise ValueError("Instance images root doesn't exists.")

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
            self.class_images_path = list(self.class_data_root.iterdir())
254
255
256
257
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
        example["instance_prompt_ids"] = self.tokenizer(
            self.instance_prompt,
            padding="do_not_pad",
            truncation=True,
            max_length=self.tokenizer.model_max_length,
        ).input_ids

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
            example["class_prompt_ids"] = self.tokenizer(
                self.class_prompt,
                padding="do_not_pad",
                truncation=True,
                max_length=self.tokenizer.model_max_length,
            ).input_ids

        return example


class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


def get_params_to_save(params):
    return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))


def main():
    args = parse_args()

    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
    if jax.process_index() == 0:
        transformers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()

    if args.seed is not None:
        set_seed(args.seed)

    rng = jax.random.PRNGKey(args.seed)

    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
352
                args.pretrained_model_name_or_path, safety_checker=None, revision=args.revision
353
354
355
356
357
358
359
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
360
361
            total_sample_batch_size = args.sample_batch_size * jax.local_device_count()
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=total_sample_batch_size)
362
363
364
365
366
367
368
369
370
371
372
373
374
375

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not jax.process_index() == 0
            ):
                prompt_ids = pipeline.prepare_inputs(example["prompt"])
                prompt_ids = shard(prompt_ids)
                p_params = jax_utils.replicate(params)
                rng = jax.random.split(rng)[0]
                sample_rng = jax.random.split(rng, jax.device_count())
                images = pipeline(prompt_ids, p_params, sample_rng, jit=True).images
                images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
                images = pipeline.numpy_to_pil(np.array(images))

                for i, image in enumerate(images):
376
                    hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest()
377
378
379
380
381
382
383
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)

            del pipeline

    # Handle the repository creation
    if jax.process_index() == 0:
384
        if args.output_dir is not None:
385
386
            os.makedirs(args.output_dir, exist_ok=True)

387
388
389
390
391
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

392
393
394
395
    # Load the tokenizer and add the placeholder token as a additional special token
    if args.tokenizer_name:
        tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
    elif args.pretrained_model_name_or_path:
396
397
398
399
400
        tokenizer = CLIPTokenizer.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
        )
    else:
        raise NotImplementedError("No tokenizer specified!")
401
402
403
404
405
406

    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
407
        class_num=args.num_class_images,
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
    )

    def collate_fn(examples):
        input_ids = [example["instance_prompt_ids"] for example in examples]
        pixel_values = [example["instance_images"] for example in examples]

        # Concat class and instance examples for prior preservation.
        # We do this to avoid doing two forward passes.
        if args.with_prior_preservation:
            input_ids += [example["class_prompt_ids"] for example in examples]
            pixel_values += [example["class_images"] for example in examples]

        pixel_values = torch.stack(pixel_values)
        pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

        input_ids = tokenizer.pad(
            {"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
        ).input_ids

        batch = {
            "input_ids": input_ids,
            "pixel_values": pixel_values,
        }
        batch = {k: v.numpy() for k, v in batch.items()}
        return batch

    total_train_batch_size = args.train_batch_size * jax.local_device_count()
Pedro Cuenca's avatar
Pedro Cuenca committed
438
439
440
441
442
443
444
    if len(train_dataset) < total_train_batch_size:
        raise ValueError(
            f"Training batch size is {total_train_batch_size}, but your dataset only contains"
            f" {len(train_dataset)} images. Please, use a larger dataset or reduce the effective batch size. Note that"
            f" there are {jax.local_device_count()} parallel devices, so your batch size can't be smaller than that."
        )

445
446
447
448
449
450
451
452
453
454
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=total_train_batch_size, shuffle=True, collate_fn=collate_fn, drop_last=True
    )

    weight_dtype = jnp.float32
    if args.mixed_precision == "fp16":
        weight_dtype = jnp.float16
    elif args.mixed_precision == "bf16":
        weight_dtype = jnp.bfloat16

455
456
457
458
459
460
    if args.pretrained_vae_name_or_path:
        # TODO(patil-suraj): Upload flax weights for the VAE
        vae_arg, vae_kwargs = (args.pretrained_vae_name_or_path, {"from_pt": True})
    else:
        vae_arg, vae_kwargs = (args.pretrained_model_name_or_path, {"subfolder": "vae", "revision": args.revision})

461
    # Load models and create wrapper for stable diffusion
462
    text_encoder = FlaxCLIPTextModel.from_pretrained(
463
464
465
466
        args.pretrained_model_name_or_path,
        subfolder="text_encoder",
        dtype=weight_dtype,
        revision=args.revision,
467
    )
468
    vae, vae_params = FlaxAutoencoderKL.from_pretrained(
469
470
471
        vae_arg,
        dtype=weight_dtype,
        **vae_kwargs,
472
473
    )
    unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
474
475
476
477
        args.pretrained_model_name_or_path,
        subfolder="unet",
        dtype=weight_dtype,
        revision=args.revision,
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    )

    # Optimization
    if args.scale_lr:
        args.learning_rate = args.learning_rate * total_train_batch_size

    constant_scheduler = optax.constant_schedule(args.learning_rate)

    adamw = optax.adamw(
        learning_rate=constant_scheduler,
        b1=args.adam_beta1,
        b2=args.adam_beta2,
        eps=args.adam_epsilon,
        weight_decay=args.adam_weight_decay,
    )

    optimizer = optax.chain(
        optax.clip_by_global_norm(args.max_grad_norm),
        adamw,
    )

    unet_state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer)
    text_encoder_state = train_state.TrainState.create(
        apply_fn=text_encoder.__call__, params=text_encoder.params, tx=optimizer
    )

    noise_scheduler = FlaxDDPMScheduler(
        beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
    )
507
    noise_scheduler_state = noise_scheduler.create_state()
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

    # Initialize our training
    train_rngs = jax.random.split(rng, jax.local_device_count())

    def train_step(unet_state, text_encoder_state, vae_params, batch, train_rng):
        dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3)

        if args.train_text_encoder:
            params = {"text_encoder": text_encoder_state.params, "unet": unet_state.params}
        else:
            params = {"unet": unet_state.params}

        def compute_loss(params):
            # Convert images to latent space
            vae_outputs = vae.apply(
                {"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode
            )
            latents = vae_outputs.latent_dist.sample(sample_rng)
            # (NHWC) -> (NCHW)
            latents = jnp.transpose(latents, (0, 3, 1, 2))
528
            latents = latents * vae.config.scaling_factor
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

            # Sample noise that we'll add to the latents
            noise_rng, timestep_rng = jax.random.split(sample_rng)
            noise = jax.random.normal(noise_rng, latents.shape)
            # Sample a random timestep for each image
            bsz = latents.shape[0]
            timesteps = jax.random.randint(
                timestep_rng,
                (bsz,),
                0,
                noise_scheduler.config.num_train_timesteps,
            )

            # Add noise to the latents according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
544
            noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps)
545
546
547
548
549
550
551
552
553
554
555
556

            # Get the text embedding for conditioning
            if args.train_text_encoder:
                encoder_hidden_states = text_encoder_state.apply_fn(
                    batch["input_ids"], params=params["text_encoder"], dropout_rng=dropout_rng, train=True
                )[0]
            else:
                encoder_hidden_states = text_encoder(
                    batch["input_ids"], params=text_encoder_state.params, train=False
                )[0]

            # Predict the noise residual
557
            model_pred = unet.apply(
558
                {"params": params["unet"]}, noisy_latents, timesteps, encoder_hidden_states, train=True
559
560
561
562
563
564
565
566
567
            ).sample

            # Get the target for loss depending on the prediction type
            if noise_scheduler.config.prediction_type == "epsilon":
                target = noise
            elif noise_scheduler.config.prediction_type == "v_prediction":
                target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps)
            else:
                raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
568
569
570

            if args.with_prior_preservation:
                # Chunk the noise and noise_pred into two parts and compute the loss on each part separately.
571
572
                model_pred, model_pred_prior = jnp.split(model_pred, 2, axis=0)
                target, target_prior = jnp.split(target, 2, axis=0)
573
574

                # Compute instance loss
575
                loss = (target - model_pred) ** 2
576
577
578
                loss = loss.mean()

                # Compute prior loss
579
                prior_loss = (target_prior - model_pred_prior) ** 2
580
581
582
583
584
                prior_loss = prior_loss.mean()

                # Add the prior loss to the instance loss.
                loss = loss + args.prior_loss_weight * prior_loss
            else:
585
                loss = (target - model_pred) ** 2
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
                loss = loss.mean()

            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grad = grad_fn(params)
        grad = jax.lax.pmean(grad, "batch")

        new_unet_state = unet_state.apply_gradients(grads=grad["unet"])
        if args.train_text_encoder:
            new_text_encoder_state = text_encoder_state.apply_gradients(grads=grad["text_encoder"])
        else:
            new_text_encoder_state = text_encoder_state

        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return new_unet_state, new_text_encoder_state, metrics, new_train_rng

    # Create parallel version of the train step
    p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, 1))

    # Replicate the train state on each device
    unet_state = jax_utils.replicate(unet_state)
    text_encoder_state = jax_utils.replicate(text_encoder_state)
    vae_params = jax_utils.replicate(vae_params)

    # Train!
    num_update_steps_per_epoch = math.ceil(len(train_dataloader))

    # Scheduler and math around the number of training steps.
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch

    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")

629
630
    def checkpoint(step=None):
        # Create the pipeline using the trained modules and save it.
Patrick von Platen's avatar
Patrick von Platen committed
631
        scheduler, _ = FlaxPNDMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
632
633
634
635
636
637
638
639
640
641
        safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained(
            "CompVis/stable-diffusion-safety-checker", from_pt=True
        )
        pipeline = FlaxStableDiffusionPipeline(
            text_encoder=text_encoder,
            vae=vae,
            unet=unet,
            tokenizer=tokenizer,
            scheduler=scheduler,
            safety_checker=safety_checker,
642
            feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"),
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        )

        outdir = os.path.join(args.output_dir, str(step)) if step else args.output_dir
        pipeline.save_pretrained(
            outdir,
            params={
                "text_encoder": get_params_to_save(text_encoder_state.params),
                "vae": get_params_to_save(vae_params),
                "unet": get_params_to_save(unet_state.params),
                "safety_checker": safety_checker.params,
            },
        )

        if args.push_to_hub:
            message = f"checkpoint-{step}" if step is not None else "End of training"
658
659
660
661
662
663
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message=message,
                ignore_patterns=["step_*", "epoch_*"],
            )
664

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
    global_step = 0

    epochs = tqdm(range(args.num_train_epochs), desc="Epoch ... ", position=0)
    for epoch in epochs:
        # ======================== Training ================================

        train_metrics = []

        steps_per_epoch = len(train_dataset) // total_train_batch_size
        train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
        # train
        for batch in train_dataloader:
            batch = shard(batch)
            unet_state, text_encoder_state, train_metric, train_rngs = p_train_step(
                unet_state, text_encoder_state, vae_params, batch, train_rngs
            )
            train_metrics.append(train_metric)

683
            train_step_progress_bar.update(jax.local_device_count())
684
685

            global_step += 1
686
687
            if jax.process_index() == 0 and args.save_steps and global_step % args.save_steps == 0:
                checkpoint(global_step)
688
689
690
691
692
693
694
695
696
            if global_step >= args.max_train_steps:
                break

        train_metric = jax_utils.unreplicate(train_metric)

        train_step_progress_bar.close()
        epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")

    if jax.process_index() == 0:
697
        checkpoint()
698
699
700
701


if __name__ == "__main__":
    main()