convert_ldm_original_checkpoint_to_diffusers.py 14 KB
Newer Older
Lysandre Debut's avatar
Lysandre Debut committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the LDM checkpoints. """

import argparse
import json
import torch


def shave_segments(path, n_shave_prefix_segments=1):
    """
    Removes segments. Positive values shave the first segments, negative shave the last segments.
    """
    if n_shave_prefix_segments >= 0:
        return '.'.join(path.split('.')[n_shave_prefix_segments:])
    else:
        return '.'.join(path.split('.')[:n_shave_prefix_segments])


def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item.replace('in_layers.0', 'norm1')
        new_item = new_item.replace('in_layers.2', 'conv1')

        new_item = new_item.replace('out_layers.0', 'norm2')
        new_item = new_item.replace('out_layers.3', 'conv2')

        new_item = new_item.replace('emb_layers.1', 'time_emb_proj')
        new_item = new_item.replace('skip_connection', 'conv_shortcut')

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({'old': old_item, 'new': new_item})

    return mapping


def renew_attention_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside attentions to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        new_item = new_item.replace('norm.weight', 'group_norm.weight')
        new_item = new_item.replace('norm.bias', 'group_norm.bias')

        new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
        new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({'old': old_item, 'new': new_item})

    return mapping


Patrick von Platen's avatar
Patrick von Platen committed
75
def assign_to_checkpoint(paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None):
Lysandre Debut's avatar
Lysandre Debut committed
76
77
78
79
80
81
82
83
84
85
86
87
    """
    This does the final conversion step: take locally converted weights and apply a global renaming
    to them. It splits attention layers, and takes into account additional replacements
    that may arise.

    Assigns the weights to the new checkpoint.
    """
    assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."

    # Splits the attention layers into three variables.
    if attention_paths_to_split is not None:
        for path, path_map in attention_paths_to_split.items():
Patrick von Platen's avatar
Patrick von Platen committed
88
89
            old_tensor = old_checkpoint[path]
            channels = old_tensor.shape[0] // 3
Lysandre Debut's avatar
Lysandre Debut committed
90

Patrick von Platen's avatar
Patrick von Platen committed
91
92
93
94
95
96
97
98
99
100
            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)

            num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3

            old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
            query, key, value = old_tensor.split(channels // num_heads, dim=1)

            checkpoint[path_map['query']] = query.reshape(target_shape)
            checkpoint[path_map['key']] = key.reshape(target_shape)
            checkpoint[path_map['value']] = value.reshape(target_shape)
Lysandre Debut's avatar
Lysandre Debut committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    for path in paths:
        new_path = path['new']

        # These have already been assigned
        if attention_paths_to_split is not None and new_path in attention_paths_to_split:
            continue

        # Global renaming happens here
        new_path = new_path.replace('middle_block.0', 'mid.resnets.0')
        new_path = new_path.replace('middle_block.1', 'mid.attentions.0')
        new_path = new_path.replace('middle_block.2', 'mid.resnets.1')

        if additional_replacements is not None:
            for replacement in additional_replacements:
                new_path = new_path.replace(replacement['old'], replacement['new'])

Patrick von Platen's avatar
Patrick von Platen committed
118
119
120
121
122
        # proj_attn.weight has to be converted from conv 1D to linear
        if "proj_attn.weight" in new_path:
            checkpoint[new_path] = old_checkpoint[path['old']][:, :, 0]
        else:
            checkpoint[new_path] = old_checkpoint[path['old']]
Lysandre Debut's avatar
Lysandre Debut committed
123
124
125
126


def convert_ldm_checkpoint(checkpoint, config):
    """
Lysandre Debut's avatar
Lysandre Debut committed
127
    Takes a state dict and a config, and returns a converted checkpoint.
Lysandre Debut's avatar
Lysandre Debut committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    """
    new_checkpoint = {}

    new_checkpoint['time_embedding.linear_1.weight'] = checkpoint['time_embed.0.weight']
    new_checkpoint['time_embedding.linear_1.bias'] = checkpoint['time_embed.0.bias']
    new_checkpoint['time_embedding.linear_2.weight'] = checkpoint['time_embed.2.weight']
    new_checkpoint['time_embedding.linear_2.bias'] = checkpoint['time_embed.2.bias']

    new_checkpoint['conv_in.weight'] = checkpoint['input_blocks.0.0.weight']
    new_checkpoint['conv_in.bias'] = checkpoint['input_blocks.0.0.bias']

    new_checkpoint['conv_norm_out.weight'] = checkpoint['out.0.weight']
    new_checkpoint['conv_norm_out.bias'] = checkpoint['out.0.bias']
    new_checkpoint['conv_out.weight'] = checkpoint['out.2.weight']
    new_checkpoint['conv_out.bias'] = checkpoint['out.2.bias']

    # Retrieves the keys for the input blocks only
Lysandre Debut's avatar
Lysandre Debut committed
145
    num_input_blocks = len({'.'.join(layer.split('.')[:2]) for layer in checkpoint if 'input_blocks' in layer})
Lysandre Debut's avatar
Lysandre Debut committed
146
147
148
    input_blocks = {layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(num_input_blocks)}

    # Retrieves the keys for the middle blocks only
Lysandre Debut's avatar
Lysandre Debut committed
149
    num_middle_blocks = len({'.'.join(layer.split('.')[:2]) for layer in checkpoint if 'middle_block' in layer})
Lysandre Debut's avatar
Lysandre Debut committed
150
151
152
    middle_blocks = {layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(num_middle_blocks)}

    # Retrieves the keys for the output blocks only
Lysandre Debut's avatar
Lysandre Debut committed
153
    num_output_blocks = len({'.'.join(layer.split('.')[:2]) for layer in checkpoint if 'output_blocks' in layer})
Lysandre Debut's avatar
Lysandre Debut committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    output_blocks = {layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(num_output_blocks)}

    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config['num_res_blocks'] + 1)
        layer_in_block_id = (i - 1) % (config['num_res_blocks'] + 1)

        resnets = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key]
        attentions = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key]

        if f'input_blocks.{i}.0.op.weight' in checkpoint:
            new_checkpoint[f'downsample_blocks.{block_id}.downsamplers.0.conv.weight'] = checkpoint[f'input_blocks.{i}.0.op.weight']
            new_checkpoint[f'downsample_blocks.{block_id}.downsamplers.0.conv.bias'] = checkpoint[f'input_blocks.{i}.0.op.bias']

        paths = renew_resnet_paths(resnets)
        meta_path = {'old': f'input_blocks.{i}.0', 'new': f'downsample_blocks.{block_id}.resnets.{layer_in_block_id}'}
        resnet_op = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'}
Patrick von Platen's avatar
Patrick von Platen committed
170
        assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[meta_path, resnet_op], config=config)
Lysandre Debut's avatar
Lysandre Debut committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

        if len(attentions):
            paths = renew_attention_paths(attentions)
            meta_path = {'old': f'input_blocks.{i}.1', 'new': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}'}
            to_split = {
                f'input_blocks.{i}.1.qkv.bias': {
                    'key': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias',
                    'query': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias',
                    'value': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias',
                },
                f'input_blocks.{i}.1.qkv.weight': {
                    'key': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight',
                    'query': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight',
                    'value': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight',
                },
            }
            assign_to_checkpoint(
                paths,
                new_checkpoint,
                checkpoint,
                additional_replacements=[meta_path],
Patrick von Platen's avatar
Patrick von Platen committed
192
193
                attention_paths_to_split=to_split,
                config=config
Lysandre Debut's avatar
Lysandre Debut committed
194
195
196
197
198
199
200
            )

    resnet_0 = middle_blocks[0]
    attentions = middle_blocks[1]
    resnet_1 = middle_blocks[2]

    resnet_0_paths = renew_resnet_paths(resnet_0)
Patrick von Platen's avatar
Patrick von Platen committed
201
    assign_to_checkpoint(resnet_0_paths, new_checkpoint, checkpoint, config=config)
Lysandre Debut's avatar
Lysandre Debut committed
202
203

    resnet_1_paths = renew_resnet_paths(resnet_1)
Patrick von Platen's avatar
Patrick von Platen committed
204
    assign_to_checkpoint(resnet_1_paths, new_checkpoint, checkpoint, config=config)
Lysandre Debut's avatar
Lysandre Debut committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    attentions_paths = renew_attention_paths(attentions)
    to_split = {
        'middle_block.1.qkv.bias': {
            'key': 'mid.attentions.0.key.bias',
            'query': 'mid.attentions.0.query.bias',
            'value': 'mid.attentions.0.value.bias',
        },
        'middle_block.1.qkv.weight': {
            'key': 'mid.attentions.0.key.weight',
            'query': 'mid.attentions.0.query.weight',
            'value': 'mid.attentions.0.value.weight',
        },
    }
Patrick von Platen's avatar
Patrick von Platen committed
219
    assign_to_checkpoint(attentions_paths, new_checkpoint, checkpoint, attention_paths_to_split=to_split, config=config)
Lysandre Debut's avatar
Lysandre Debut committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

    for i in range(num_output_blocks):
        block_id = i // (config['num_res_blocks'] + 1)
        layer_in_block_id = i % (config['num_res_blocks'] + 1)
        output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
        output_block_list = {}

        for layer in output_block_layers:
            layer_id, layer_name = layer.split('.')[0], shave_segments(layer, 1)
            if layer_id in output_block_list:
                output_block_list[layer_id].append(layer_name)
            else:
                output_block_list[layer_id] = [layer_name]

        if len(output_block_list) > 1:
            resnets = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key]
            attentions = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key]

            resnet_0_paths = renew_resnet_paths(resnets)
            paths = renew_resnet_paths(resnets)

            meta_path = {'old': f'output_blocks.{i}.0', 'new': f'upsample_blocks.{block_id}.resnets.{layer_in_block_id}'}
Patrick von Platen's avatar
Patrick von Platen committed
242
            assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[meta_path], config=config)
Lysandre Debut's avatar
Lysandre Debut committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

            if ['conv.weight', 'conv.bias'] in output_block_list.values():
                index = list(output_block_list.values()).index(['conv.weight', 'conv.bias'])
                new_checkpoint[f'upsample_blocks.{block_id}.upsamplers.0.conv.weight'] = checkpoint[f'output_blocks.{i}.{index}.conv.weight']
                new_checkpoint[f'upsample_blocks.{block_id}.upsamplers.0.conv.bias'] = checkpoint[f'output_blocks.{i}.{index}.conv.bias']

                # Clear attentions as they have been attributed above.
                if len(attentions) == 2:
                    attentions = []

            if len(attentions):
                paths = renew_attention_paths(attentions)
                meta_path = {
                    'old': f'output_blocks.{i}.1',
                    'new': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}'
                }
                to_split = {
                    f'output_blocks.{i}.1.qkv.bias': {
                        'key': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias',
                        'query': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias',
                        'value': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias',
                    },
                    f'output_blocks.{i}.1.qkv.weight': {
                        'key': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight',
                        'query': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight',
                        'value': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight',
                    },
                }
                assign_to_checkpoint(
                    paths,
                    new_checkpoint,
                    checkpoint,
                    additional_replacements=[meta_path],
Patrick von Platen's avatar
Patrick von Platen committed
276
277
                    attention_paths_to_split=to_split if any('qkv' in key for key in attentions) else None,
                    config=config,
Lysandre Debut's avatar
Lysandre Debut committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
                )
        else:
            resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
            for path in resnet_0_paths:
                old_path = '.'.join(['output_blocks', str(i), path['old']])
                new_path = '.'.join(['upsample_blocks', str(block_id), 'resnets', str(layer_in_block_id), path['new']])

                new_checkpoint[new_path] = checkpoint[old_path]

    return new_checkpoint


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
    )

    parser.add_argument(
        "--config_file",
        default=None,
        type=str,
        required=True,
        help="The config json file corresponding to the architecture.",
    )

    parser.add_argument(
        "--dump_path", default=None, type=str, required=True, help="Path to the output model."
    )

    args = parser.parse_args()

    checkpoint = torch.load(args.checkpoint_path)

    with open(args.config_file) as f:
        config = json.loads(f.read())

    converted_checkpoint = convert_ldm_checkpoint(checkpoint, config)
    torch.save(checkpoint, args.dump_path)