test_if.py 4.16 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import torch

from diffusers import (
    IFPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
25
from diffusers.utils.import_utils import is_xformers_available
26
from diffusers.utils.testing_utils import load_numpy, require_torch_gpu, skip_mps, slow, torch_device
Patrick von Platen's avatar
Patrick von Platen committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin


@skip_mps
class IFPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
    pipeline_class = IFPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}

    def get_dummy_components(self):
        return self._get_dummy_components()

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
53
            "output_type": "np",
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56
57
58
59
60
61
62
63
        }

        return inputs

    def test_save_load_optional_components(self):
        self._test_save_load_optional_components()

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
    def test_save_load_float16(self):
        # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
64
        super().test_save_load_float16(expected_max_diff=1e-1)
Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
68
69
70
71
72
73
74
75
76

    def test_attention_slicing_forward_pass(self):
        self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)

    def test_save_load_local(self):
        self._test_save_load_local()

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(
            expected_max_diff=1e-2,
        )

77
78
79
80
81
82
83
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)

Patrick von Platen's avatar
Patrick von Platen committed
84
85
86
87
88
89
90
91
92
93

@slow
@require_torch_gpu
class IFPipelineSlowTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

94
95
96
97
    def test_if_text_to_image(self):
        pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
        pipe.unet.set_attn_processor(AttnAddedKVProcessor())
        pipe.enable_model_cpu_offload()
Patrick von Platen's avatar
Patrick von Platen committed
98

99
100
101
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.empty_cache()
        torch.cuda.reset_peak_memory_stats()
Patrick von Platen's avatar
Patrick von Platen committed
102
103

        generator = torch.Generator(device="cpu").manual_seed(0)
104
105
        output = pipe(
            prompt="anime turtle",
Patrick von Platen's avatar
Patrick von Platen committed
106
107
108
109
110
111
112
113
            num_inference_steps=2,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

        mem_bytes = torch.cuda.max_memory_allocated()
114
        assert mem_bytes < 12 * 10**9
Patrick von Platen's avatar
Patrick von Platen committed
115
116
117
118
119

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy"
        )
        assert_mean_pixel_difference(image, expected_image)
120
        pipe.remove_all_hooks()