test_stable_unclip_img2img.py 10.3 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
2
3
4
import gc
import random
import unittest

5
import numpy as np
Will Berman's avatar
Will Berman committed
6
7
import torch
from transformers import (
8
    CLIPImageProcessor,
Will Berman's avatar
Will Berman committed
9
10
11
12
13
14
15
16
17
18
19
    CLIPTextConfig,
    CLIPTextModel,
    CLIPTokenizer,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)

from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImg2ImgPipeline, UNet2DConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
Pedro Cuenca's avatar
Pedro Cuenca committed
20
21
22
23
24
25
26
27
28
from diffusers.utils.testing_utils import (
    floats_tensor,
    load_image,
    load_numpy,
    require_torch_gpu,
    skip_mps,
    slow,
    torch_device,
)
Will Berman's avatar
Will Berman committed
29

30
31
32
33
34
from ...pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ...test_pipelines_common import (
    PipelineTesterMixin,
    assert_mean_pixel_difference,
)
Will Berman's avatar
Will Berman committed
35
36
37
38


class StableUnCLIPImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = StableUnCLIPImg2ImgPipeline
39
40
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
Will Berman's avatar
Will Berman committed
41
42
43
44
45
46
47

    def get_dummy_components(self):
        embedder_hidden_size = 32
        embedder_projection_dim = embedder_hidden_size

        # image encoding components

48
        feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
Will Berman's avatar
Will Berman committed
49

50
        torch.manual_seed(0)
Will Berman's avatar
Will Berman committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        image_encoder = CLIPVisionModelWithProjection(
            CLIPVisionConfig(
                hidden_size=embedder_hidden_size,
                projection_dim=embedder_projection_dim,
                num_hidden_layers=5,
                num_attention_heads=4,
                image_size=32,
                intermediate_size=37,
                patch_size=1,
            )
        )

        # regular denoising components

        torch.manual_seed(0)
        image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedder_hidden_size)
        image_noising_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2")

        torch.manual_seed(0)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        torch.manual_seed(0)
        text_encoder = CLIPTextModel(
            CLIPTextConfig(
                bos_token_id=0,
                eos_token_id=2,
                hidden_size=embedder_hidden_size,
                projection_dim=32,
                intermediate_size=37,
                layer_norm_eps=1e-05,
                num_attention_heads=4,
                num_hidden_layers=5,
                pad_token_id=1,
                vocab_size=1000,
            )
        )

        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
            up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),
            block_out_channels=(32, 64),
            attention_head_dim=(2, 4),
            class_embed_type="projection",
            # The class embeddings are the noise augmented image embeddings.
            # I.e. the image embeddings concated with the noised embeddings of the same dimension
            projection_class_embeddings_input_dim=embedder_projection_dim * 2,
            cross_attention_dim=embedder_hidden_size,
            layers_per_block=1,
            upcast_attention=True,
            use_linear_projection=True,
        )

        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_schedule="scaled_linear",
            beta_start=0.00085,
            beta_end=0.012,
            prediction_type="v_prediction",
            set_alpha_to_one=False,
            steps_offset=1,
        )

        torch.manual_seed(0)
        vae = AutoencoderKL()

        components = {
            # image encoding components
            "feature_extractor": feature_extractor,
123
            "image_encoder": image_encoder.eval(),
Will Berman's avatar
Will Berman committed
124
            # image noising components
125
            "image_normalizer": image_normalizer.eval(),
Will Berman's avatar
Will Berman committed
126
127
128
            "image_noising_scheduler": image_noising_scheduler,
            # regular denoising components
            "tokenizer": tokenizer,
129
130
            "text_encoder": text_encoder.eval(),
            "unet": unet.eval(),
Will Berman's avatar
Will Berman committed
131
            "scheduler": scheduler,
132
            "vae": vae.eval(),
Will Berman's avatar
Will Berman committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        }

        return components

    def get_dummy_inputs(self, device, seed=0, pil_image=True):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)

        if pil_image:
            input_image = input_image * 0.5 + 0.5
            input_image = input_image.clamp(0, 1)
            input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy()
            input_image = DiffusionPipeline.numpy_to_pil(input_image)[0]

        return {
            "prompt": "An anime racoon running a marathon",
            "image": input_image,
            "generator": generator,
            "num_inference_steps": 2,
            "output_type": "np",
        }

Pedro Cuenca's avatar
Pedro Cuenca committed
159
    @skip_mps
160
161
162
163
164
165
166
167
168
169
170
171
172
    def test_image_embeds_none(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableUnCLIPImg2ImgPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs.update({"image_embeds": None})
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
173
        expected_slice = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078])
174
175
176

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

Will Berman's avatar
Will Berman committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
    # because GPU undeterminism requires a looser check.
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device in ["cpu", "mps"]

        self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference)

    # Overriding PipelineTesterMixin::test_inference_batch_single_identical
    # because undeterminism requires a looser check.
    def test_inference_batch_single_identical(self):
        test_max_difference = torch_device in ["cpu", "mps"]

        self._test_inference_batch_single_identical(test_max_difference=test_max_difference)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(test_max_difference=False)


@slow
@require_torch_gpu
class StableUnCLIPImg2ImgPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_stable_unclip_l_img2img(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
        )

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy"
        )

        pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
            "fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
222
223
224
225
        # stable unclip will oom when integration tests are run on a V100,
        # so turn on memory savings
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()
Will Berman's avatar
Will Berman committed
226
227

        generator = torch.Generator(device="cpu").manual_seed(0)
228
        output = pipe(input_image, "anime turle", generator=generator, output_type="np")
Will Berman's avatar
Will Berman committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

        image = output.images[0]

        assert image.shape == (768, 768, 3)

        assert_mean_pixel_difference(image, expected_image)

    def test_stable_unclip_h_img2img(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
        )

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy"
        )

        pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
            "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
250
251
252
253
        # stable unclip will oom when integration tests are run on a V100,
        # so turn on memory savings
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()
Will Berman's avatar
Will Berman committed
254
255

        generator = torch.Generator(device="cpu").manual_seed(0)
256
        output = pipe(input_image, "anime turle", generator=generator, output_type="np")
Will Berman's avatar
Will Berman committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

        image = output.images[0]

        assert image.shape == (768, 768, 3)

        assert_mean_pixel_difference(image, expected_image)

    def test_stable_unclip_img2img_pipeline_with_sequential_cpu_offloading(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
        )

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
            "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()

        _ = pipe(
282
            input_image,
Will Berman's avatar
Will Berman committed
283
284
285
286
287
288
289
290
            "anime turtle",
            num_inference_steps=2,
            output_type="np",
        )

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 7 * 10**9