test_stable_unclip_img2img.py 10.6 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
2
3
4
import gc
import random
import unittest

5
import numpy as np
Will Berman's avatar
Will Berman committed
6
7
import torch
from transformers import (
8
    CLIPImageProcessor,
Will Berman's avatar
Will Berman committed
9
10
11
12
13
14
15
16
17
18
19
    CLIPTextConfig,
    CLIPTextModel,
    CLIPTokenizer,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)

from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImg2ImgPipeline, UNet2DConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
Pedro Cuenca's avatar
Pedro Cuenca committed
20
from diffusers.utils.testing_utils import (
21
    enable_full_determinism,
Pedro Cuenca's avatar
Pedro Cuenca committed
22
23
24
25
26
27
28
29
    floats_tensor,
    load_image,
    load_numpy,
    require_torch_gpu,
    skip_mps,
    slow,
    torch_device,
)
Will Berman's avatar
Will Berman committed
30

31
32
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
33
    PipelineLatentTesterMixin,
34
35
36
    PipelineTesterMixin,
    assert_mean_pixel_difference,
)
Will Berman's avatar
Will Berman committed
37
38


39
enable_full_determinism()
40
41


42
class StableUnCLIPImg2ImgPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
Will Berman's avatar
Will Berman committed
43
    pipeline_class = StableUnCLIPImg2ImgPipeline
44
45
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
46
47
48
    image_params = frozenset(
        []
    )  # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
Will Berman's avatar
Will Berman committed
49
50
51
52
53
54
55

    def get_dummy_components(self):
        embedder_hidden_size = 32
        embedder_projection_dim = embedder_hidden_size

        # image encoding components

56
        feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
Will Berman's avatar
Will Berman committed
57

58
        torch.manual_seed(0)
Will Berman's avatar
Will Berman committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        image_encoder = CLIPVisionModelWithProjection(
            CLIPVisionConfig(
                hidden_size=embedder_hidden_size,
                projection_dim=embedder_projection_dim,
                num_hidden_layers=5,
                num_attention_heads=4,
                image_size=32,
                intermediate_size=37,
                patch_size=1,
            )
        )

        # regular denoising components

        torch.manual_seed(0)
        image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedder_hidden_size)
        image_noising_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2")

        torch.manual_seed(0)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        torch.manual_seed(0)
        text_encoder = CLIPTextModel(
            CLIPTextConfig(
                bos_token_id=0,
                eos_token_id=2,
                hidden_size=embedder_hidden_size,
                projection_dim=32,
                intermediate_size=37,
                layer_norm_eps=1e-05,
                num_attention_heads=4,
                num_hidden_layers=5,
                pad_token_id=1,
                vocab_size=1000,
            )
        )

        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
            up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"),
            block_out_channels=(32, 64),
            attention_head_dim=(2, 4),
            class_embed_type="projection",
            # The class embeddings are the noise augmented image embeddings.
            # I.e. the image embeddings concated with the noised embeddings of the same dimension
            projection_class_embeddings_input_dim=embedder_projection_dim * 2,
            cross_attention_dim=embedder_hidden_size,
            layers_per_block=1,
            upcast_attention=True,
            use_linear_projection=True,
        )

        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_schedule="scaled_linear",
            beta_start=0.00085,
            beta_end=0.012,
            prediction_type="v_prediction",
            set_alpha_to_one=False,
            steps_offset=1,
        )

        torch.manual_seed(0)
        vae = AutoencoderKL()

        components = {
            # image encoding components
            "feature_extractor": feature_extractor,
131
            "image_encoder": image_encoder.eval(),
Will Berman's avatar
Will Berman committed
132
            # image noising components
133
            "image_normalizer": image_normalizer.eval(),
Will Berman's avatar
Will Berman committed
134
135
136
            "image_noising_scheduler": image_noising_scheduler,
            # regular denoising components
            "tokenizer": tokenizer,
137
138
            "text_encoder": text_encoder.eval(),
            "unet": unet.eval(),
Will Berman's avatar
Will Berman committed
139
            "scheduler": scheduler,
140
            "vae": vae.eval(),
Will Berman's avatar
Will Berman committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        }

        return components

    def get_dummy_inputs(self, device, seed=0, pil_image=True):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)

        if pil_image:
            input_image = input_image * 0.5 + 0.5
            input_image = input_image.clamp(0, 1)
            input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy()
            input_image = DiffusionPipeline.numpy_to_pil(input_image)[0]

        return {
            "prompt": "An anime racoon running a marathon",
            "image": input_image,
            "generator": generator,
            "num_inference_steps": 2,
            "output_type": "np",
        }

Pedro Cuenca's avatar
Pedro Cuenca committed
167
    @skip_mps
168
169
170
171
172
173
174
175
176
177
178
179
180
    def test_image_embeds_none(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableUnCLIPImg2ImgPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs.update({"image_embeds": None})
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
181
        expected_slice = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078])
182
183
184

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3

Will Berman's avatar
Will Berman committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
    # because GPU undeterminism requires a looser check.
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device in ["cpu", "mps"]

        self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference)

    # Overriding PipelineTesterMixin::test_inference_batch_single_identical
    # because undeterminism requires a looser check.
    def test_inference_batch_single_identical(self):
        test_max_difference = torch_device in ["cpu", "mps"]

        self._test_inference_batch_single_identical(test_max_difference=test_max_difference)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(test_max_difference=False)


@slow
@require_torch_gpu
class StableUnCLIPImg2ImgPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_stable_unclip_l_img2img(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
        )

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy"
        )

        pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
            "fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
230
231
232
233
        # stable unclip will oom when integration tests are run on a V100,
        # so turn on memory savings
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()
Will Berman's avatar
Will Berman committed
234
235

        generator = torch.Generator(device="cpu").manual_seed(0)
236
        output = pipe(input_image, "anime turle", generator=generator, output_type="np")
Will Berman's avatar
Will Berman committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

        image = output.images[0]

        assert image.shape == (768, 768, 3)

        assert_mean_pixel_difference(image, expected_image)

    def test_stable_unclip_h_img2img(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
        )

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy"
        )

        pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
            "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
258
259
260
261
        # stable unclip will oom when integration tests are run on a V100,
        # so turn on memory savings
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()
Will Berman's avatar
Will Berman committed
262
263

        generator = torch.Generator(device="cpu").manual_seed(0)
264
        output = pipe(input_image, "anime turle", generator=generator, output_type="np")
Will Berman's avatar
Will Berman committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

        image = output.images[0]

        assert image.shape == (768, 768, 3)

        assert_mean_pixel_difference(image, expected_image)

    def test_stable_unclip_img2img_pipeline_with_sequential_cpu_offloading(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png"
        )

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
            "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()

        _ = pipe(
290
            input_image,
Will Berman's avatar
Will Berman committed
291
292
293
294
295
296
297
298
            "anime turtle",
            num_inference_steps=2,
            output_type="np",
        )

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 7 * 10**9