test_versatile_diffusion_mega.py 4.57 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import tempfile
import unittest

import numpy as np
import torch

from diffusers import VersatileDiffusionPipeline
24
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
25
26
27
28
29


torch.backends.cuda.matmul.allow_tf32 = False


30
class VersatileDiffusionMegaPipelineFastTests(unittest.TestCase):
31
32
33
    pass


34
@nightly
35
36
37
38
39
40
41
42
@require_torch_gpu
class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

43
    def test_from_save_pretrained(self):
44
45
46
47
48
        pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt_image = load_image(
Patrick von Platen's avatar
Patrick von Platen committed
49
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"
50
51
        )

52
        generator = torch.manual_seed(0)
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        image = pipe.dual_guided(
            prompt="first prompt",
            image=prompt_image,
            text_to_image_strength=0.75,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        ).images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = VersatileDiffusionPipeline.from_pretrained(tmpdirname, torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        generator = generator.manual_seed(0)
        new_image = pipe.dual_guided(
            prompt="first prompt",
            image=prompt_image,
            text_to_image_strength=0.75,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        ).images

80
        assert np.abs(image - new_image).max() < 1e-5, "Models don't have the same forward pass"
81
82
83
84
85
86
87
88

    def test_inference_dual_guided_then_text_to_image(self):
        pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "cyberpunk 2077"
        init_image = load_image(
Patrick von Platen's avatar
Patrick von Platen committed
89
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"
90
        )
91
        generator = torch.manual_seed(0)
92
93
94
95
96
97
98
99
100
101
102
103
104
        image = pipe.dual_guided(
            prompt=prompt,
            image=init_image,
            text_to_image_strength=0.75,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=50,
            output_type="numpy",
        ).images

        image_slice = image[0, 253:256, 253:256, -1]

        assert image.shape == (1, 512, 512, 3)
105
106
107
        expected_slice = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
108
109

        prompt = "A painting of a squirrel eating a burger "
110
        generator = torch.manual_seed(0)
111
112
113
114
115
116
117
        image = pipe.text_to_image(
            prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
        ).images

        image_slice = image[0, 253:256, 253:256, -1]

        assert image.shape == (1, 512, 512, 3)
118
119
120
        expected_slice = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
121

122
        image = pipe.image_variation(init_image, generator=generator, output_type="numpy").images
123
124
125
126

        image_slice = image[0, 253:256, 253:256, -1]

        assert image.shape == (1, 512, 512, 3)
127
128
129
        expected_slice = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1