test_unclip_image_variation.py 16.9 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Will Berman's avatar
Will Berman committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
23
24
25
26
27
28
29
from transformers import (
    CLIPImageProcessor,
    CLIPTextConfig,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)
Will Berman's avatar
Will Berman committed
30

31
32
33
34
35
36
37
from diffusers import (
    DiffusionPipeline,
    UnCLIPImageVariationPipeline,
    UnCLIPScheduler,
    UNet2DConditionModel,
    UNet2DModel,
)
Will Berman's avatar
Will Berman committed
38
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
Dhruv Nair's avatar
Dhruv Nair committed
39
40
41
42
43
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    load_image,
    load_numpy,
44
    nightly,
Dhruv Nair's avatar
Dhruv Nair committed
45
46
47
48
    require_torch_gpu,
    skip_mps,
    torch_device,
)
Will Berman's avatar
Will Berman committed
49

50
51
from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
Will Berman's avatar
Will Berman committed
52
53


54
enable_full_determinism()
55
56


57
58
class UnCLIPImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = UnCLIPImageVariationPipeline
59
60
    params = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"}
    batch_params = IMAGE_VARIATION_BATCH_PARAMS
Will Berman's avatar
Will Berman committed
61

62
63
64
65
66
67
    required_optional_params = [
        "generator",
        "return_dict",
        "decoder_num_inference_steps",
        "super_res_num_inference_steps",
    ]
68
    test_xformers_attention = False
Will Berman's avatar
Will Berman committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
        return 100

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModelWithProjection(config)

    @property
    def dummy_image_encoder(self):
        torch.manual_seed(0)
        config = CLIPVisionConfig(
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            num_hidden_layers=5,
            num_attention_heads=4,
            image_size=32,
            intermediate_size=37,
            patch_size=1,
        )
        return CLIPVisionModelWithProjection(config)

    @property
    def dummy_text_proj(self):
        torch.manual_seed(0)

        model_kwargs = {
            "clip_embeddings_dim": self.text_embedder_hidden_size,
            "time_embed_dim": self.time_embed_dim,
            "cross_attention_dim": self.cross_attention_dim,
        }

        model = UnCLIPTextProjModel(**model_kwargs)
        return model

    @property
    def dummy_decoder(self):
        torch.manual_seed(0)

        model_kwargs = {
144
            "sample_size": 32,
Will Berman's avatar
Will Berman committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
            # RGB in channels
            "in_channels": 3,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 6,
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": "identity",
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_super_res_kwargs(self):
        return {
166
            "sample_size": 64,
Will Berman's avatar
Will Berman committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
            "layers_per_block": 1,
            "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
            "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "in_channels": 6,
            "out_channels": 3,
        }

    @property
    def dummy_super_res_first(self):
        torch.manual_seed(0)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

    @property
    def dummy_super_res_last(self):
        # seeded differently to get different unet than `self.dummy_super_res_first`
        torch.manual_seed(1)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

190
    def get_dummy_components(self):
Will Berman's avatar
Will Berman committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        decoder = self.dummy_decoder
        text_proj = self.dummy_text_proj
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        super_res_first = self.dummy_super_res_first
        super_res_last = self.dummy_super_res_last

        decoder_scheduler = UnCLIPScheduler(
            variance_type="learned_range",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        super_res_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        feature_extractor = CLIPImageProcessor(crop_size=32, size=32)

        image_encoder = self.dummy_image_encoder

214
215
216
217
218
219
220
221
222
223
224
225
        return {
            "decoder": decoder,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_proj": text_proj,
            "feature_extractor": feature_extractor,
            "image_encoder": image_encoder,
            "super_res_first": super_res_first,
            "super_res_last": super_res_last,
            "decoder_scheduler": decoder_scheduler,
            "super_res_scheduler": super_res_scheduler,
        }
Will Berman's avatar
Will Berman committed
226

227
    def get_dummy_inputs(self, device, seed=0, pil_image=True):
Will Berman's avatar
Will Berman committed
228
        input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
229
230
231
232
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
Will Berman's avatar
Will Berman committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

        if pil_image:
            input_image = input_image * 0.5 + 0.5
            input_image = input_image.clamp(0, 1)
            input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy()
            input_image = DiffusionPipeline.numpy_to_pil(input_image)[0]

        return {
            "image": input_image,
            "generator": generator,
            "decoder_num_inference_steps": 2,
            "super_res_num_inference_steps": 2,
            "output_type": "np",
        }

    def test_unclip_image_variation_input_tensor(self):
        device = "cpu"

251
252
253
254
255
256
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)
Will Berman's avatar
Will Berman committed
257

258
        pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
Will Berman's avatar
Will Berman committed
259
260
261
262

        output = pipe(**pipeline_inputs)
        image = output.images

263
        tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
Will Berman's avatar
Will Berman committed
264
265
266
267
268
269
270
271
272

        image_from_tuple = pipe(
            **tuple_pipeline_inputs,
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

273
        assert image.shape == (1, 64, 64, 3)
Will Berman's avatar
Will Berman committed
274
275
276
277

        expected_slice = np.array(
            [
                0.9997,
278
279
280
281
282
283
284
285
                0.0002,
                0.9997,
                0.9997,
                0.9969,
                0.0023,
                0.9997,
                0.9969,
                0.9970,
Will Berman's avatar
Will Berman committed
286
287
288
289
290
291
292
293
294
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    def test_unclip_image_variation_input_image(self):
        device = "cpu"

295
        components = self.get_dummy_components()
Will Berman's avatar
Will Berman committed
296

297
298
299
300
301
302
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
Will Berman's avatar
Will Berman committed
303
304
305
306

        output = pipe(**pipeline_inputs)
        image = output.images

307
        tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
Will Berman's avatar
Will Berman committed
308
309
310
311
312
313
314
315
316

        image_from_tuple = pipe(
            **tuple_pipeline_inputs,
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

317
        assert image.shape == (1, 64, 64, 3)
Will Berman's avatar
Will Berman committed
318

319
        expected_slice = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971])
Will Berman's avatar
Will Berman committed
320
321
322
323
324
325
326

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    def test_unclip_image_variation_input_list_images(self):
        device = "cpu"

327
        components = self.get_dummy_components()
Will Berman's avatar
Will Berman committed
328

329
330
331
332
333
334
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
Will Berman's avatar
Will Berman committed
335
336
337
338
339
340
341
342
        pipeline_inputs["image"] = [
            pipeline_inputs["image"],
            pipeline_inputs["image"],
        ]

        output = pipe(**pipeline_inputs)
        image = output.images

343
        tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
Will Berman's avatar
Will Berman committed
344
345
346
347
348
349
350
351
352
353
354
355
356
        tuple_pipeline_inputs["image"] = [
            tuple_pipeline_inputs["image"],
            tuple_pipeline_inputs["image"],
        ]

        image_from_tuple = pipe(
            **tuple_pipeline_inputs,
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

357
        assert image.shape == (2, 64, 64, 3)
Will Berman's avatar
Will Berman committed
358
359
360
361

        expected_slice = np.array(
            [
                0.9997,
362
363
364
365
366
367
368
369
                0.9989,
                0.0008,
                0.0021,
                0.9960,
                0.0018,
                0.0014,
                0.0002,
                0.9933,
Will Berman's avatar
Will Berman committed
370
371
372
373
374
375
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

376
377
378
379
380
381
    def test_unclip_passed_image_embed(self):
        device = torch.device("cpu")

        class DummyScheduler:
            init_noise_sigma = 1

382
383
384
385
386
387
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)
388
389
390
391
392

        generator = torch.Generator(device=device).manual_seed(0)
        dtype = pipe.decoder.dtype
        batch_size = 1

393
394
395
396
397
398
        shape = (
            batch_size,
            pipe.decoder.config.in_channels,
            pipe.decoder.config.sample_size,
            pipe.decoder.config.sample_size,
        )
399
400
401
402
403
404
        decoder_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        shape = (
            batch_size,
405
406
407
            pipe.super_res_first.config.in_channels // 2,
            pipe.super_res_first.config.sample_size,
            pipe.super_res_first.config.sample_size,
408
409
410
411
412
        )
        super_res_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

413
        pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
414
415
416
417
418

        img_out_1 = pipe(
            **pipeline_inputs, decoder_latents=decoder_latents, super_res_latents=super_res_latents
        ).images

419
        pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
420
421
422
423
424
425
426
427
428
429
430
431
432
433
        # Don't pass image, instead pass embedding
        image = pipeline_inputs.pop("image")
        image_embeddings = pipe.image_encoder(image).image_embeds

        img_out_2 = pipe(
            **pipeline_inputs,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            image_embeddings=image_embeddings,
        ).images

        # make sure passing text embeddings manually is identical
        assert np.abs(img_out_1 - img_out_2).max() < 1e-4

434
435
    # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
    # because UnCLIP GPU undeterminism requires a looser check.
436
    @skip_mps
437
438
439
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"

440
441
442
443
444
445
        # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor
        expected_max_diff = 1e-2

        self._test_attention_slicing_forward_pass(
            test_max_difference=test_max_difference, expected_max_diff=expected_max_diff
        )
446
447
448

    # Overriding PipelineTesterMixin::test_inference_batch_single_identical
    # because UnCLIP undeterminism requires a looser check.
449
    @unittest.skip("UnCLIP produces very large differences. Test is not useful.")
450
    @skip_mps
451
    def test_inference_batch_single_identical(self):
452
453
454
455
        additional_params_copy_to_batched_inputs = [
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]
456
        self._test_inference_batch_single_identical(
457
            additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, expected_max_diff=5e-3
458
459
460
        )

    def test_inference_batch_consistent(self):
461
462
463
464
465
        additional_params_copy_to_batched_inputs = [
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]

466
467
468
        if torch_device == "mps":
            # TODO: MPS errors with larger batch sizes
            batch_sizes = [2, 3]
469
470
471
472
            self._test_inference_batch_consistent(
                batch_sizes=batch_sizes,
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
            )
473
        else:
474
475
476
            self._test_inference_batch_consistent(
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs
            )
477

478
    @skip_mps
479
480
481
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

482
    @unittest.skip("UnCLIP produces very large difference. Test is not useful.")
483
    @skip_mps
484
    def test_save_load_local(self):
485
        return super().test_save_load_local(expected_max_difference=4e-3)
486

487
    @skip_mps
488
489
490
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

491
492
493
494
    @unittest.skip("UnCLIP produces very large difference in fp16 vs fp32. Test is not useful.")
    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=1.0)

Will Berman's avatar
Will Berman committed
495

496
@nightly
Will Berman's avatar
Will Berman committed
497
498
@require_torch_gpu
class UnCLIPImageVariationPipelineIntegrationTests(unittest.TestCase):
499
500
501
502
503
504
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Will Berman's avatar
Will Berman committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_unclip_image_variation_karlo(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/unclip/karlo_v1_alpha_cat_variation_fp16.npy"
        )

520
        pipeline = UnCLIPImageVariationPipeline.from_pretrained(
521
            "kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float16
522
        )
Will Berman's avatar
Will Berman committed
523
524
525
        pipeline = pipeline.to(torch_device)
        pipeline.set_progress_bar_config(disable=None)

526
        generator = torch.Generator(device="cpu").manual_seed(0)
Will Berman's avatar
Will Berman committed
527
528
529
530
531
532
        output = pipeline(
            input_image,
            generator=generator,
            output_type="np",
        )

533
        image = output.images[0]
Will Berman's avatar
Will Berman committed
534
535

        assert image.shape == (256, 256, 3)
536

537
        assert_mean_pixel_difference(image, expected_image, 15)