test_controlnet_img2img.py 17.6 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/

import gc
import random
import tempfile
import unittest

import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    DDIMScheduler,
    StableDiffusionControlNetImg2ImgPipeline,
    UNet2DConditionModel,
)
35
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
Dhruv Nair's avatar
Dhruv Nair committed
36
from diffusers.utils import load_image
37
from diffusers.utils.import_utils import is_xformers_available
Dhruv Nair's avatar
Dhruv Nair committed
38
39
40
41
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    floats_tensor,
    load_numpy,
42
    numpy_cosine_similarity_distance,
Dhruv Nair's avatar
Dhruv Nair committed
43
44
45
46
47
    require_torch_gpu,
    slow,
    torch_device,
)
from diffusers.utils.torch_utils import randn_tensor
48
49

from ..pipeline_params import (
50
    IMAGE_TO_IMAGE_IMAGE_PARAMS,
51
52
53
    TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
54
from ..test_pipelines_common import (
Aryan's avatar
Aryan committed
55
    IPAdapterTesterMixin,
56
57
58
59
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
60
61


62
enable_full_determinism()
63
64


65
class ControlNetImg2ImgPipelineFastTests(
Aryan's avatar
Aryan committed
66
67
68
69
70
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineTesterMixin,
    unittest.TestCase,
71
):
72
73
74
    pipeline_class = StableDiffusionControlNetImg2ImgPipeline
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
75
76
    image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"})
    image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
77
78
79
80

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
81
            block_out_channels=(4, 8),
82
83
84
85
86
87
88
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
89
            norm_num_groups=1,
90
91
92
        )
        torch.manual_seed(0)
        controlnet = ControlNetModel(
93
            block_out_channels=(4, 8),
94
95
96
97
98
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
99
            norm_num_groups=1,
100
101
102
103
104
105
106
107
108
109
110
        )
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
111
            block_out_channels=[4, 8],
112
113
114
115
116
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
117
            norm_num_groups=2,
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
143
            "image_encoder": None,
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2
        control_image = randn_tensor(
            (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
            generator=generator,
            device=torch.device(device),
        )
        image = floats_tensor(control_image.shape, rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
167
            "output_type": "np",
168
169
170
171
172
173
174
175
176
            "image": image,
            "control_image": control_image,
        }

        return inputs

    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

177
178
179
180
181
182
    def test_ip_adapter_single(self):
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.7096, 0.5149, 0.3571, 0.5897, 0.4715, 0.4052, 0.6098, 0.6886, 0.4213])
        return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)

183
184
185
186
187
188
189
190
191
192
193
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)


194
class StableDiffusionMultiControlNetPipelineFastTests(
Aryan's avatar
Aryan committed
195
    IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
196
):
197
198
199
200
201
202
203
204
    pipeline_class = StableDiffusionControlNetImg2ImgPipeline
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
    image_params = frozenset([])  # TO_DO: add image_params once refactored VaeImageProcessor.preprocess

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
205
            block_out_channels=(4, 8),
206
207
208
209
210
211
212
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
213
            norm_num_groups=1,
214
215
        )
        torch.manual_seed(0)
216
217
218

        def init_weights(m):
            if isinstance(m, torch.nn.Conv2d):
219
                torch.nn.init.normal_(m.weight)
220
221
                m.bias.data.fill_(1.0)

222
        controlnet1 = ControlNetModel(
223
            block_out_channels=(4, 8),
224
225
226
227
228
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
229
            norm_num_groups=1,
230
        )
231
232
        controlnet1.controlnet_down_blocks.apply(init_weights)

233
234
        torch.manual_seed(0)
        controlnet2 = ControlNetModel(
235
            block_out_channels=(4, 8),
236
237
238
239
240
            layers_per_block=2,
            in_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            cross_attention_dim=32,
            conditioning_embedding_out_channels=(16, 32),
241
            norm_num_groups=1,
242
        )
243
244
        controlnet2.controlnet_down_blocks.apply(init_weights)

245
246
247
248
249
250
251
252
253
254
        torch.manual_seed(0)
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
255
            block_out_channels=[4, 8],
256
257
258
259
260
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
261
            norm_num_groups=2,
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        controlnet = MultiControlNetModel([controlnet1, controlnet2])

        components = {
            "unet": unet,
            "controlnet": controlnet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
289
            "image_encoder": None,
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        controlnet_embedder_scale_factor = 2

        control_image = [
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
            randn_tensor(
                (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
                generator=generator,
                device=torch.device(device),
            ),
        ]

        image = floats_tensor(control_image[0].shape, rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
322
            "output_type": "np",
323
324
325
326
327
328
            "image": image,
            "control_image": control_image,
        }

        return inputs

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    def test_control_guidance_switch(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        scale = 10.0
        steps = 4

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_1 = pipe(**inputs)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = steps
        inputs["controlnet_conditioning_scale"] = scale
        output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]

        # make sure that all outputs are different
        assert np.sum(np.abs(output_1 - output_2)) > 1e-3
        assert np.sum(np.abs(output_1 - output_3)) > 1e-3
        assert np.sum(np.abs(output_1 - output_4)) > 1e-3

362
363
364
365
366
367
368
369
370
371
372
373
374
    def test_attention_slicing_forward_pass(self):
        return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=2e-3)

375
376
377
378
379
380
    def test_ip_adapter_single(self):
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.5293, 0.7339, 0.6642, 0.3950, 0.5212, 0.5175, 0.7002, 0.5907, 0.5182])
        return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    def test_save_pretrained_raise_not_implemented_exception(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        with tempfile.TemporaryDirectory() as tmpdir:
            try:
                # save_pretrained is not implemented for Multi-ControlNet
                pipe.save_pretrained(tmpdir)
            except NotImplementedError:
                pass


@slow
@require_torch_gpu
class ControlNetImg2ImgPipelineSlowTests(unittest.TestCase):
397
398
399
400
401
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_canny(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")

        pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "evil space-punk bird"
        control_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        ).resize((512, 512))
        image = load_image(
            "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
        ).resize((512, 512))

        output = pipe(
            prompt,
            image,
            control_image=control_image,
            generator=generator,
            output_type="np",
            num_inference_steps=50,
            strength=0.6,
        )

        image = output.images[0]

        assert image.shape == (512, 512, 3)

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy"
        )

        assert np.abs(expected_image - image).max() < 9e-2
444
445
446

    def test_load_local(self):
        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny")
447
        pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
448
449
            "runwayml/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
        )
450
451
        pipe.unet.set_default_attn_processor()
        pipe.enable_model_cpu_offload()
452
453
454
455

        controlnet = ControlNetModel.from_single_file(
            "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth"
        )
456
        pipe_sf = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
457
458
459
            "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors",
            safety_checker=None,
            controlnet=controlnet,
460
            scheduler_type="pndm",
461
        )
462
463
464
        pipe_sf.unet.set_default_attn_processor()
        pipe_sf.enable_model_cpu_offload()

465
466
467
468
469
470
        control_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        ).resize((512, 512))
        image = load_image(
            "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
        ).resize((512, 512))
471
        prompt = "bird"
472

473
474
475
476
477
478
479
480
481
482
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            prompt,
            image=image,
            control_image=control_image,
            strength=0.9,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
        ).images[0]
483

484
485
486
487
488
489
490
491
492
493
        generator = torch.Generator(device="cpu").manual_seed(0)
        output_sf = pipe_sf(
            prompt,
            image=image,
            control_image=control_image,
            strength=0.9,
            generator=generator,
            output_type="np",
            num_inference_steps=3,
        ).images[0]
494

495
496
        max_diff = numpy_cosine_similarity_distance(output_sf.flatten(), output.flatten())
        assert max_diff < 1e-3