pipeline_stable_unclip.py 42.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
Will Berman's avatar
Will Berman committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
16
import warnings
Will Berman's avatar
Will Berman committed
17
18
19
20
21
22
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from transformers.models.clip.modeling_clip import CLIPTextModelOutput

23
from ...image_processor import VaeImageProcessor
24
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
Will Berman's avatar
Will Berman committed
25
26
27
from ...models import AutoencoderKL, PriorTransformer, UNet2DConditionModel
from ...models.embeddings import get_timestep_embedding
from ...schedulers import KarrasDiffusionSchedulers
28
from ...utils import is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring
Will Berman's avatar
Will Berman committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import StableUnCLIPPipeline

        >>> pipe = StableUnCLIPPipeline.from_pretrained(
        ...     "fusing/stable-unclip-2-1-l", torch_dtype=torch.float16
        ... )  # TODO update model path
        >>> pipe = pipe.to("cuda")

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> images = pipe(prompt).images
        >>> images[0].save("astronaut_horse.png")
        ```
"""


53
class StableUnCLIPPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
Will Berman's avatar
Will Berman committed
54
55
56
    """
    Pipeline for text-to-image generation using stable unCLIP.

57
58
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Will Berman's avatar
Will Berman committed
59
60
61

    Args:
        prior_tokenizer ([`CLIPTokenizer`]):
62
            A [`CLIPTokenizer`].
Will Berman's avatar
Will Berman committed
63
        prior_text_encoder ([`CLIPTextModelWithProjection`]):
64
            Frozen [`CLIPTextModelWithProjection`] text-encoder.
Will Berman's avatar
Will Berman committed
65
66
67
68
69
70
71
72
73
        prior ([`PriorTransformer`]):
            The canonincal unCLIP prior to approximate the image embedding from the text embedding.
        prior_scheduler ([`KarrasDiffusionSchedulers`]):
            Scheduler used in the prior denoising process.
        image_normalizer ([`StableUnCLIPImageNormalizer`]):
            Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image
            embeddings after the noise has been applied.
        image_noising_scheduler ([`KarrasDiffusionSchedulers`]):
            Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined
74
75
76
            by the `noise_level`.
        tokenizer ([`CLIPTokenizer`]):
            A [`CLIPTokenizer`].
Will Berman's avatar
Will Berman committed
77
        text_encoder ([`CLIPTextModel`]):
78
79
80
            Frozen [`CLIPTextModel`] text-encoder.
        unet ([`UNet2DConditionModel`]):
            A [`UNet2DConditionModel`] to denoise the encoded image latents.
Will Berman's avatar
Will Berman committed
81
82
83
84
85
86
        scheduler ([`KarrasDiffusionSchedulers`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents.
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
    """

87
88
    _exclude_from_cpu_offload = ["prior", "image_normalizer"]

Will Berman's avatar
Will Berman committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    # prior components
    prior_tokenizer: CLIPTokenizer
    prior_text_encoder: CLIPTextModelWithProjection
    prior: PriorTransformer
    prior_scheduler: KarrasDiffusionSchedulers

    # image noising components
    image_normalizer: StableUnCLIPImageNormalizer
    image_noising_scheduler: KarrasDiffusionSchedulers

    # regular denoising components
    tokenizer: CLIPTokenizer
    text_encoder: CLIPTextModel
    unet: UNet2DConditionModel
    scheduler: KarrasDiffusionSchedulers

    vae: AutoencoderKL

    def __init__(
        self,
        # prior components
        prior_tokenizer: CLIPTokenizer,
        prior_text_encoder: CLIPTextModelWithProjection,
        prior: PriorTransformer,
        prior_scheduler: KarrasDiffusionSchedulers,
        # image noising components
        image_normalizer: StableUnCLIPImageNormalizer,
        image_noising_scheduler: KarrasDiffusionSchedulers,
        # regular denoising components
        tokenizer: CLIPTokenizer,
        text_encoder: CLIPTextModelWithProjection,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        # vae
        vae: AutoencoderKL,
    ):
        super().__init__()

        self.register_modules(
            prior_tokenizer=prior_tokenizer,
            prior_text_encoder=prior_text_encoder,
            prior=prior,
            prior_scheduler=prior_scheduler,
            image_normalizer=image_normalizer,
            image_noising_scheduler=image_noising_scheduler,
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            unet=unet,
            scheduler=scheduler,
            vae=vae,
        )

        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
142
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
Will Berman's avatar
Will Berman committed
143
144
145
146

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
    def enable_vae_slicing(self):
        r"""
147
148
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Will Berman's avatar
Will Berman committed
149
150
151
152
153
154
        """
        self.vae.enable_slicing()

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
    def disable_vae_slicing(self):
        r"""
155
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
Will Berman's avatar
Will Berman committed
156
157
158
159
        computing decoding in one step.
        """
        self.vae.disable_slicing()

160
161
    def enable_model_cpu_offload(self, gpu_id=0):
        r"""
162
163
164
165
        Offload all models to CPU to reduce memory usage with a low impact on performance. Moves one whole model at a
        time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs.
        Memory savings are lower than using `enable_sequential_cpu_offload`, but performance is much better due to the
        iterative execution of the `unet`.
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

        device = torch.device(f"cuda:{gpu_id}")

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        hook = None
        for cpu_offloaded_model in [self.text_encoder, self.prior_text_encoder, self.unet, self.vae]:
            _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)

        # We'll offload the last model manually.
        self.final_offload_hook = hook

Will Berman's avatar
Will Berman committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline._encode_prompt with _encode_prompt->_encode_prior_prompt, tokenizer->prior_tokenizer, text_encoder->prior_text_encoder
    def _encode_prior_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None,
        text_attention_mask: Optional[torch.Tensor] = None,
    ):
        if text_model_output is None:
            batch_size = len(prompt) if isinstance(prompt, list) else 1
            # get prompt text embeddings
            text_inputs = self.prior_tokenizer(
                prompt,
                padding="max_length",
                max_length=self.prior_tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            text_mask = text_inputs.attention_mask.bool().to(device)

            untruncated_ids = self.prior_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.prior_tokenizer.batch_decode(
                    untruncated_ids[:, self.prior_tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.prior_tokenizer.model_max_length} tokens: {removed_text}"
                )
                text_input_ids = text_input_ids[:, : self.prior_tokenizer.model_max_length]

            prior_text_encoder_output = self.prior_text_encoder(text_input_ids.to(device))

            prompt_embeds = prior_text_encoder_output.text_embeds
            prior_text_encoder_hidden_states = prior_text_encoder_output.last_hidden_state

        else:
            batch_size = text_model_output[0].shape[0]
            prompt_embeds, prior_text_encoder_hidden_states = text_model_output[0], text_model_output[1]
            text_mask = text_attention_mask

        prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
        prior_text_encoder_hidden_states = prior_text_encoder_hidden_states.repeat_interleave(
            num_images_per_prompt, dim=0
        )
        text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)

        if do_classifier_free_guidance:
            uncond_tokens = [""] * batch_size

            uncond_input = self.prior_tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=self.prior_tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            uncond_text_mask = uncond_input.attention_mask.bool().to(device)
            negative_prompt_embeds_prior_text_encoder_output = self.prior_text_encoder(
                uncond_input.input_ids.to(device)
            )

            negative_prompt_embeds = negative_prompt_embeds_prior_text_encoder_output.text_embeds
            uncond_prior_text_encoder_hidden_states = (
                negative_prompt_embeds_prior_text_encoder_output.last_hidden_state
            )

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method

            seq_len = negative_prompt_embeds.shape[1]
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)

            seq_len = uncond_prior_text_encoder_hidden_states.shape[1]
            uncond_prior_text_encoder_hidden_states = uncond_prior_text_encoder_hidden_states.repeat(
                1, num_images_per_prompt, 1
            )
            uncond_prior_text_encoder_hidden_states = uncond_prior_text_encoder_hidden_states.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )
            uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)

            # done duplicates

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            prior_text_encoder_hidden_states = torch.cat(
                [uncond_prior_text_encoder_hidden_states, prior_text_encoder_hidden_states]
            )

            text_mask = torch.cat([uncond_text_mask, text_mask])

        return prompt_embeds, prior_text_encoder_hidden_states, text_mask

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
297
        lora_scale: Optional[float] = None,
Will Berman's avatar
Will Berman committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
             prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
313
314
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
Will Berman's avatar
Will Berman committed
315
316
317
318
319
320
321
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
322
323
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
Will Berman's avatar
Will Berman committed
324
        """
325
326
327
328
329
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

Will Berman's avatar
Will Berman committed
330
331
332
333
334
335
336
337
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
338
339
340
341
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

Will Berman's avatar
Will Berman committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

            prompt_embeds = self.text_encoder(
                text_input_ids.to(device),
                attention_mask=attention_mask,
            )
            prompt_embeds = prompt_embeds[0]

374
375
376
377
378
379
380
381
        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
Will Berman's avatar
Will Berman committed
382
383
384
385
386
387
388
389
390
391
392

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
393
            elif prompt is not None and type(prompt) is not type(negative_prompt):
Will Berman's avatar
Will Berman committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

409
410
411
412
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

Will Berman's avatar
Will Berman committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

437
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
Will Berman's avatar
Will Berman committed
438
439
440
441
442
443
444
445
446
447
448
449
450

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
451
452
453
454
455
        warnings.warn(
            "The decode_latents method is deprecated and will be removed in a future version. Please"
            " use VaeImageProcessor instead",
            FutureWarning,
        )
Will Berman's avatar
Will Berman committed
456
        latents = 1 / self.vae.config.scaling_factor * latents
457
        image = self.vae.decode(latents, return_dict=False)[0]
Will Berman's avatar
Will Berman committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs with prepare_extra_step_kwargs->prepare_prior_extra_step_kwargs, scheduler->prior_scheduler
    def prepare_prior_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the prior_scheduler step, since not all prior_schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other prior_schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.prior_scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the prior_scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.prior_scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        noise_level,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Please make sure to define only one of the two."
            )

        if prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )

        if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                "Provide either `negative_prompt` or `negative_prompt_embeds`. Cannot leave both `negative_prompt` and `negative_prompt_embeds` undefined."
            )

        if prompt is not None and negative_prompt is not None:
            if type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps:
            raise ValueError(
                f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive."
            )

    # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
    def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        latents = latents * scheduler.init_noise_sigma
        return latents

    def noise_image_embeddings(
        self,
        image_embeds: torch.Tensor,
        noise_level: int,
        noise: Optional[torch.FloatTensor] = None,
        generator: Optional[torch.Generator] = None,
    ):
        """
        Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher
        `noise_level` increases the variance in the final un-noised images.

582
583
        The noise is applied in two ways:
        1. A noise schedule is applied directly to the embeddings.
Will Berman's avatar
Will Berman committed
584
585
586
587
588
589
590
591
592
593
594
595
596
        2. A vector of sinusoidal time embeddings are appended to the output.

        In both cases, the amount of noise is controlled by the same `noise_level`.

        The embeddings are normalized before the noise is applied and un-normalized after the noise is applied.
        """
        if noise is None:
            noise = randn_tensor(
                image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype
            )

        noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device)

597
        self.image_normalizer.to(image_embeds.device)
Will Berman's avatar
Will Berman committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
        image_embeds = self.image_normalizer.scale(image_embeds)

        image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise)

        image_embeds = self.image_normalizer.unscale(image_embeds)

        noise_level = get_timestep_embedding(
            timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0
        )

        # `get_timestep_embeddings` does not contain any weights and will always return f32 tensors,
        # but we might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        noise_level = noise_level.to(image_embeds.dtype)

        image_embeds = torch.cat((image_embeds, noise_level), 1)

        return image_embeds

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        # regular denoising process args
        prompt: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 20,
        guidance_scale: float = 10.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
637
        callback_steps: int = 1,
Will Berman's avatar
Will Berman committed
638
639
640
641
642
643
644
645
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        noise_level: int = 0,
        # prior args
        prior_num_inference_steps: int = 25,
        prior_guidance_scale: float = 4.0,
        prior_latents: Optional[torch.FloatTensor] = None,
    ):
        """
646
        The call function to the pipeline for generation.
Will Berman's avatar
Will Berman committed
647
648
649

        Args:
            prompt (`str` or `List[str]`, *optional*):
650
651
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
Will Berman's avatar
Will Berman committed
652
                The height in pixels of the generated image.
653
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
Will Berman's avatar
Will Berman committed
654
655
656
657
658
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 20):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 10.0):
659
660
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
Will Berman's avatar
Will Berman committed
661
            negative_prompt (`str` or `List[str]`, *optional*):
662
663
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
Will Berman's avatar
Will Berman committed
664
665
666
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
667
668
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
Will Berman's avatar
Will Berman committed
669
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
670
671
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
Will Berman's avatar
Will Berman committed
672
            latents (`torch.FloatTensor`, *optional*):
673
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
Will Berman's avatar
Will Berman committed
674
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
675
                tensor is generated by sampling using the supplied random `generator`.
Will Berman's avatar
Will Berman committed
676
            prompt_embeds (`torch.FloatTensor`, *optional*):
677
678
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
Will Berman's avatar
Will Berman committed
679
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
680
681
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
Will Berman's avatar
Will Berman committed
682
            output_type (`str`, *optional*, defaults to `"pil"`):
683
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
Will Berman's avatar
Will Berman committed
684
            return_dict (`bool`, *optional*, defaults to `True`):
685
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
Will Berman's avatar
Will Berman committed
686
            callback (`Callable`, *optional*):
687
688
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
Will Berman's avatar
Will Berman committed
689
            callback_steps (`int`, *optional*, defaults to 1):
690
691
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
Will Berman's avatar
Will Berman committed
692
            cross_attention_kwargs (`dict`, *optional*):
693
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
Patrick von Platen's avatar
Patrick von Platen committed
694
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
Will Berman's avatar
Will Berman committed
695
696
            noise_level (`int`, *optional*, defaults to `0`):
                The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in
697
                the final un-noised images. See [`StableUnCLIPPipeline.noise_image_embeddings`] for more details.
Will Berman's avatar
Will Berman committed
698
699
700
701
            prior_num_inference_steps (`int`, *optional*, defaults to 25):
                The number of denoising steps in the prior denoising process. More denoising steps usually lead to a
                higher quality image at the expense of slower inference.
            prior_guidance_scale (`float`, *optional*, defaults to 4.0):
702
703
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
Will Berman's avatar
Will Berman committed
704
            prior_latents (`torch.FloatTensor`, *optional*):
705
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
Will Berman's avatar
Will Berman committed
706
                embedding generation in the prior denoising process. Can be used to tweak the same generation with
707
708
                different prompts. If not provided, a latents tensor is generated by sampling using the supplied random
                `generator`.
Will Berman's avatar
Will Berman committed
709
710
711
712

        Examples:

        Returns:
713
714
715
            [`~pipelines.ImagePipelineOutput`] or `tuple`:
                [`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning
                a tuple, the first element is a list with the generated images.
Will Berman's avatar
Will Berman committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
        """
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt=prompt,
            height=height,
            width=width,
            callback_steps=callback_steps,
            noise_level=noise_level,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        batch_size = batch_size * num_images_per_prompt

        device = self._execution_device

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        prior_do_classifier_free_guidance = prior_guidance_scale > 1.0

        # 3. Encode input prompt
        prior_prompt_embeds, prior_text_encoder_hidden_states, prior_text_mask = self._encode_prior_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=prior_do_classifier_free_guidance,
        )

        # 4. Prepare prior timesteps
        self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device)
        prior_timesteps_tensor = self.prior_scheduler.timesteps

        # 5. Prepare prior latent variables
        embedding_dim = self.prior.config.embedding_dim
        prior_latents = self.prepare_latents(
            (batch_size, embedding_dim),
            prior_prompt_embeds.dtype,
            device,
            generator,
            prior_latents,
            self.prior_scheduler,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        prior_extra_step_kwargs = self.prepare_prior_extra_step_kwargs(generator, eta)

        # 7. Prior denoising loop
        for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([prior_latents] * 2) if prior_do_classifier_free_guidance else prior_latents
            latent_model_input = self.prior_scheduler.scale_model_input(latent_model_input, t)

            predicted_image_embedding = self.prior(
                latent_model_input,
                timestep=t,
                proj_embedding=prior_prompt_embeds,
                encoder_hidden_states=prior_text_encoder_hidden_states,
                attention_mask=prior_text_mask,
            ).predicted_image_embedding

            if prior_do_classifier_free_guidance:
                predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
                predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * (
                    predicted_image_embedding_text - predicted_image_embedding_uncond
                )

            prior_latents = self.prior_scheduler.step(
                predicted_image_embedding,
                timestep=t,
                sample=prior_latents,
                **prior_extra_step_kwargs,
801
802
                return_dict=False,
            )[0]
Will Berman's avatar
Will Berman committed
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

            if callback is not None and i % callback_steps == 0:
                callback(i, t, prior_latents)

        prior_latents = self.prior.post_process_latents(prior_latents)

        image_embeds = prior_latents

        # done prior

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 8. Encode input prompt
819
820
821
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
Will Berman's avatar
Will Berman committed
822
823
824
825
826
827
828
829
        prompt_embeds = self._encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
830
            lora_scale=text_encoder_lora_scale,
Will Berman's avatar
Will Berman committed
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
        )

        # 9. Prepare image embeddings
        image_embeds = self.noise_image_embeddings(
            image_embeds=image_embeds,
            noise_level=noise_level,
            generator=generator,
        )

        if do_classifier_free_guidance:
            negative_prompt_embeds = torch.zeros_like(image_embeds)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            image_embeds = torch.cat([negative_prompt_embeds, image_embeds])

        # 10. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 11. Prepare latent variables
853
        num_channels_latents = self.unet.config.in_channels
Will Berman's avatar
Will Berman committed
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        latents = self.prepare_latents(
            shape=shape,
            dtype=prompt_embeds.dtype,
            device=device,
            generator=generator,
            latents=latents,
            scheduler=self.scheduler,
        )

        # 12. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 13. Denoising loop
        for i, t in enumerate(self.progress_bar(timesteps)):
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            # predict the noise residual
            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=prompt_embeds,
                class_labels=image_embeds,
                cross_attention_kwargs=cross_attention_kwargs,
879
880
                return_dict=False,
            )[0]
Will Berman's avatar
Will Berman committed
881
882
883
884
885
886
887

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
888
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
Will Berman's avatar
Will Berman committed
889
890
891
892

            if callback is not None and i % callback_steps == 0:
                callback(i, t, latents)

893
894
895
896
897
898
        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        else:
            image = latents

        image = self.image_processor.postprocess(image, output_type=output_type)
Will Berman's avatar
Will Berman committed
899

900
901
902
903
        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

Will Berman's avatar
Will Berman committed
904
905
906
907
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)