train_unconditional_ort.py 11 KB
Newer Older
Prathik Rao's avatar
Prathik Rao committed
1
2
3
import argparse
import math
import os
4
5
from pathlib import Path
from typing import Optional
Prathik Rao's avatar
Prathik Rao committed
6
7
8
9
10
11
12
13
14
15

import torch
import torch.nn.functional as F

from accelerate import Accelerator
from accelerate.logging import get_logger
from datasets import load_dataset
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
16
from diffusers.utils import check_min_version
17
from huggingface_hub import HfFolder, Repository, whoami
Prathik Rao's avatar
Prathik Rao committed
18
19
20
21
22
23
24
25
26
27
28
29
30
from onnxruntime.training.ortmodule import ORTModule
from torchvision.transforms import (
    CenterCrop,
    Compose,
    InterpolationMode,
    Normalize,
    RandomHorizontalFlip,
    Resize,
    ToTensor,
)
from tqdm.auto import tqdm


31
32
33
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")

Prathik Rao's avatar
Prathik Rao committed
34
35
36
logger = get_logger(__name__)


37
38
39
40
41
42
43
44
45
46
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


Prathik Rao's avatar
Prathik Rao committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def main(args):
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with="tensorboard",
        logging_dir=logging_dir,
    )

    model = UNet2DModel(
        sample_size=args.resolution,
        in_channels=3,
        out_channels=3,
        layers_per_block=2,
        block_out_channels=(128, 128, 256, 256, 512, 512),
        down_block_types=(
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "AttnDownBlock2D",
            "DownBlock2D",
        ),
        up_block_types=(
            "UpBlock2D",
            "AttnUpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
        ),
    )
    model = ORTModule(model)
80
    noise_scheduler = DDPMScheduler(num_train_timesteps=1000)
Prathik Rao's avatar
Prathik Rao committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    augmentations = Compose(
        [
            Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
            CenterCrop(args.resolution),
            RandomHorizontalFlip(),
            ToTensor(),
            Normalize([0.5], [0.5]),
        ]
    )

    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            use_auth_token=True if args.use_auth_token else None,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")

    def transforms(examples):
        images = [augmentations(image.convert("RGB")) for image in examples["image"]]
        return {"input": images}

    dataset.set_transform(transforms)
    train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True)

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps,
        num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
    )

    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )

    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)

    ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay)

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)
Prathik Rao's avatar
Prathik Rao committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

    global_step = 0
    for epoch in range(args.num_epochs):
        model.train()
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
            clean_images = batch["input"]
            # Sample noise that we'll add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
            bsz = clean_images.shape[0]
            # Sample a random timestep for each image
            timesteps = torch.randint(
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
            ).long()

            # Add noise to the clean images according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
                noise_pred = model(noisy_images, timesteps, return_dict=True)[0]
                loss = F.mse_loss(noise_pred, noise)
                accelerator.backward(loss)

                accelerator.clip_grad_norm_(model.parameters(), 1.0)
                optimizer.step()
                lr_scheduler.step()
                if args.use_ema:
                    ema_model.step(model)
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
                logs["ema_decay"] = ema_model.decay
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
        progress_bar.close()

        accelerator.wait_for_everyone()

        # Generate sample images for visual inspection
        if accelerator.is_main_process:
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
                pipeline = DDPMPipeline(
                    unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model),
                    scheduler=noise_scheduler,
                )

                generator = torch.manual_seed(0)
                # run pipeline in inference (sample random noise and denoise)
                images = pipeline(generator=generator, batch_size=args.eval_batch_size, output_type="numpy").images

                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
                accelerator.trackers[0].writer.add_images(
                    "test_samples", images_processed.transpose(0, 3, 1, 2), epoch
                )

            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
219
                pipeline.save_pretrained(args.output_dir)
Prathik Rao's avatar
Prathik Rao committed
220
                if args.push_to_hub:
221
                    repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False)
Prathik Rao's avatar
Prathik Rao committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        accelerator.wait_for_everyone()

    accelerator.end_training()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--dataset_name", type=str, default=None)
    parser.add_argument("--dataset_config_name", type=str, default=None)
    parser.add_argument("--train_data_dir", type=str, default=None, help="A folder containing the training data.")
    parser.add_argument("--output_dir", type=str, default="ddpm-model-64")
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument("--cache_dir", type=str, default=None)
    parser.add_argument("--resolution", type=int, default=64)
    parser.add_argument("--train_batch_size", type=int, default=16)
    parser.add_argument("--eval_batch_size", type=int, default=16)
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10)
    parser.add_argument("--save_model_epochs", type=int, default=10)
    parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
    parser.add_argument("--learning_rate", type=float, default=1e-4)
    parser.add_argument("--lr_scheduler", type=str, default="cosine")
    parser.add_argument("--lr_warmup_steps", type=int, default=500)
    parser.add_argument("--adam_beta1", type=float, default=0.95)
    parser.add_argument("--adam_beta2", type=float, default=0.999)
    parser.add_argument("--adam_weight_decay", type=float, default=1e-6)
    parser.add_argument("--adam_epsilon", type=float, default=1e-08)
    parser.add_argument("--use_ema", action="store_true", default=True)
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0)
    parser.add_argument("--ema_power", type=float, default=3 / 4)
    parser.add_argument("--ema_max_decay", type=float, default=0.9999)
    parser.add_argument("--push_to_hub", action="store_true")
    parser.add_argument("--use_auth_token", action="store_true")
    parser.add_argument("--hub_token", type=str, default=None)
    parser.add_argument("--hub_model_id", type=str, default=None)
    parser.add_argument("--hub_private_repo", action="store_true")
    parser.add_argument("--logging_dir", type=str, default="logs")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    main(args)