test_audioldm.py 15.9 KB
Newer Older
Sanchit Gandhi's avatar
Sanchit Gandhi committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import gc
import unittest

import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
    ClapTextConfig,
    ClapTextModelWithProjection,
    RobertaTokenizer,
    SpeechT5HifiGan,
    SpeechT5HifiGanConfig,
)

from diffusers import (
    AudioLDMPipeline,
    AutoencoderKL,
    DDIMScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    UNet2DConditionModel,
)
Dhruv Nair's avatar
Dhruv Nair committed
39
from diffusers.utils import is_xformers_available
40
from diffusers.utils.testing_utils import enable_full_determinism, nightly, torch_device
Sanchit Gandhi's avatar
Sanchit Gandhi committed
41

42
43
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
Sanchit Gandhi's avatar
Sanchit Gandhi committed
44
45


46
enable_full_determinism()
47
48


Sanchit Gandhi's avatar
Sanchit Gandhi committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
class AudioLDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = AudioLDMPipeline
    params = TEXT_TO_AUDIO_PARAMS
    batch_params = TEXT_TO_AUDIO_BATCH_PARAMS
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "num_waveforms_per_prompt",
            "generator",
            "latents",
            "output_type",
            "return_dict",
            "callback",
            "callback_steps",
        ]
    )

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
69
70
71
            block_out_channels=(8, 16),
            layers_per_block=1,
            norm_num_groups=8,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
72
73
74
75
76
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
77
            cross_attention_dim=(8, 16),
Sanchit Gandhi's avatar
Sanchit Gandhi committed
78
            class_embed_type="simple_projection",
79
            projection_class_embeddings_input_dim=8,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
80
81
82
83
84
85
86
87
88
89
90
            class_embeddings_concat=True,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
91
            block_out_channels=[8, 16],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
92
93
            in_channels=1,
            out_channels=1,
94
            norm_num_groups=8,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
95
96
97
98
99
100
101
102
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = ClapTextConfig(
            bos_token_id=0,
            eos_token_id=2,
103
            hidden_size=8,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
104
105
            intermediate_size=37,
            layer_norm_eps=1e-05,
106
107
            num_attention_heads=1,
            num_hidden_layers=1,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
108
109
            pad_token_id=1,
            vocab_size=1000,
110
            projection_dim=8,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
        )
        text_encoder = ClapTextModelWithProjection(text_encoder_config)
        tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77)

        vocoder_config = SpeechT5HifiGanConfig(
            model_in_dim=8,
            sampling_rate=16000,
            upsample_initial_channel=16,
            upsample_rates=[2, 2],
            upsample_kernel_sizes=[4, 4],
            resblock_kernel_sizes=[3, 7],
            resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]],
            normalize_before=False,
        )

        vocoder = SpeechT5HifiGan(vocoder_config)

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "vocoder": vocoder,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A hammer hitting a wooden surface",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
        }
        return inputs

    def test_audioldm_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components()
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = audioldm_pipe(**inputs)
        audio = output.audios[0]

        assert audio.ndim == 1
        assert len(audio) == 256

        audio_slice = audio[:10]
        expected_slice = np.array(
            [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033]
        )

        assert np.abs(audio_slice - expected_slice).max() < 1e-2

    def test_audioldm_prompt_embeds(self):
        components = self.get_dummy_components()
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = audioldm_pipe(**inputs)
        audio_1 = output.audios[0]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = audioldm_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=audioldm_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = audioldm_pipe.text_encoder(
            text_inputs,
        )
        prompt_embeds = prompt_embeds.text_embeds
        # additional L_2 normalization over each hidden-state
        prompt_embeds = F.normalize(prompt_embeds, dim=-1)

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = audioldm_pipe(**inputs)
        audio_2 = output.audios[0]

        assert np.abs(audio_1 - audio_2).max() < 1e-2

    def test_audioldm_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = audioldm_pipe(**inputs)
        audio_1 = output.audios[0]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        embeds = []
        for p in [prompt, negative_prompt]:
            text_inputs = audioldm_pipe.tokenizer(
                p,
                padding="max_length",
                max_length=audioldm_pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            text_embeds = audioldm_pipe.text_encoder(
                text_inputs,
            )
            text_embeds = text_embeds.text_embeds
            # additional L_2 normalization over each hidden-state
            text_embeds = F.normalize(text_embeds, dim=-1)

            embeds.append(text_embeds)

        inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds

        # forward
        output = audioldm_pipe(**inputs)
        audio_2 = output.audios[0]

        assert np.abs(audio_1 - audio_2).max() < 1e-2

    def test_audioldm_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        negative_prompt = "egg cracking"
        output = audioldm_pipe(**inputs, negative_prompt=negative_prompt)
        audio = output.audios[0]

        assert audio.ndim == 1
        assert len(audio) == 256

        audio_slice = audio[:10]
        expected_slice = np.array(
            [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032]
        )

        assert np.abs(audio_slice - expected_slice).max() < 1e-2

    def test_audioldm_num_waveforms_per_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        prompt = "A hammer hitting a wooden surface"

        # test num_waveforms_per_prompt=1 (default)
        audios = audioldm_pipe(prompt, num_inference_steps=2).audios

        assert audios.shape == (1, 256)

        # test num_waveforms_per_prompt=1 (default) for batch of prompts
        batch_size = 2
        audios = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios

        assert audios.shape == (batch_size, 256)

        # test num_waveforms_per_prompt for single prompt
        num_waveforms_per_prompt = 2
        audios = audioldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios

        assert audios.shape == (num_waveforms_per_prompt, 256)

        # test num_waveforms_per_prompt for batch of prompts
        batch_size = 2
        audios = audioldm_pipe(
            [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
        ).audios

        assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)

    def test_audioldm_audio_length_in_s(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)
        vocoder_sampling_rate = audioldm_pipe.vocoder.config.sampling_rate

        inputs = self.get_dummy_inputs(device)
        output = audioldm_pipe(audio_length_in_s=0.016, **inputs)
        audio = output.audios[0]

        assert audio.ndim == 1
        assert len(audio) / vocoder_sampling_rate == 0.016

        output = audioldm_pipe(audio_length_in_s=0.032, **inputs)
        audio = output.audios[0]

        assert audio.ndim == 1
        assert len(audio) / vocoder_sampling_rate == 0.032

    def test_audioldm_vocoder_model_in_dim(self):
        components = self.get_dummy_components()
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        prompt = ["hey"]

        output = audioldm_pipe(prompt, num_inference_steps=1)
        audio_shape = output.audios.shape
        assert audio_shape == (1, 256)

        config = audioldm_pipe.vocoder.config
        config.model_in_dim *= 2
        audioldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device)
        output = audioldm_pipe(prompt, num_inference_steps=1)
        audio_shape = output.audios.shape
        # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
        assert audio_shape == (1, 256)

    def test_attention_slicing_forward_pass(self):
        self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False)

    def test_inference_batch_single_identical(self):
364
        self._test_inference_batch_single_identical()
Sanchit Gandhi's avatar
Sanchit Gandhi committed
365

366
367
368
369
370
371
372
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
373

374
@nightly
Sanchit Gandhi's avatar
Sanchit Gandhi committed
375
class AudioLDMPipelineSlowTests(unittest.TestCase):
376
377
378
379
380
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Sanchit Gandhi's avatar
Sanchit Gandhi committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A hammer hitting a wooden surface",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 2.5,
        }
        return inputs

    def test_audioldm(self):
        audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm")
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        audio = audioldm_pipe(**inputs).audios[0]

        assert audio.ndim == 1
        assert len(audio) == 81920

        audio_slice = audio[77230:77240]
        expected_slice = np.array(
            [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315]
        )
        max_diff = np.abs(expected_slice - audio_slice).max()
        assert max_diff < 1e-2

418
419
420

@nightly
class AudioLDMPipelineNightlyTests(unittest.TestCase):
421
422
423
424
425
    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A hammer hitting a wooden surface",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 2.5,
        }
        return inputs

Sanchit Gandhi's avatar
Sanchit Gandhi committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    def test_audioldm_lms(self):
        audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm")
        audioldm_pipe.scheduler = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        audio = audioldm_pipe(**inputs).audios[0]

        assert audio.ndim == 1
        assert len(audio) == 81920

        audio_slice = audio[27780:27790]
        expected_slice = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212])
        max_diff = np.abs(expected_slice - audio_slice).max()
459
        assert max_diff < 3e-2