test_wuerstchen_combined.py 7.32 KB
Newer Older
Kashif Rasul's avatar
Kashif Rasul committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Kashif Rasul's avatar
Kashif Rasul committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

from diffusers import DDPMWuerstchenScheduler, WuerstchenCombinedPipeline
from diffusers.pipelines.wuerstchen import PaellaVQModel, WuerstchenDiffNeXt, WuerstchenPrior
Dhruv Nair's avatar
Dhruv Nair committed
24
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, torch_device
Kashif Rasul's avatar
Kashif Rasul committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class WuerstchenCombinedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = WuerstchenCombinedPipeline
    params = ["prompt"]
    batch_params = ["prompt", "negative_prompt"]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
Kashif Rasul's avatar
Kashif Rasul committed
41
42
        "prior_guidance_scale",
        "decoder_guidance_scale",
Kashif Rasul's avatar
Kashif Rasul committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        "negative_prompt",
        "num_inference_steps",
        "return_dict",
        "prior_num_inference_steps",
        "output_type",
    ]
    test_xformers_attention = True

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def dummy_prior(self):
        torch.manual_seed(0)

        model_kwargs = {"c_in": 2, "c": 8, "depth": 2, "c_cond": 32, "c_r": 8, "nhead": 2}
        model = WuerstchenPrior(**model_kwargs)
        return model.eval()

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_prior_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config).eval()

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            projection_dim=self.text_embedder_hidden_size,
            hidden_size=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config).eval()

    @property
    def dummy_vqgan(self):
        torch.manual_seed(0)

        model_kwargs = {
            "bottleneck_blocks": 1,
            "num_vq_embeddings": 2,
        }
        model = PaellaVQModel(**model_kwargs)
        return model.eval()

    @property
    def dummy_decoder(self):
        torch.manual_seed(0)

        model_kwargs = {
            "c_cond": self.text_embedder_hidden_size,
            "c_hidden": [320],
            "nhead": [-1],
            "blocks": [4],
            "level_config": ["CT"],
            "clip_embd": self.text_embedder_hidden_size,
            "inject_effnet": [False],
        }

        model = WuerstchenDiffNeXt(**model_kwargs)
        return model.eval()

    def get_dummy_components(self):
        prior = self.dummy_prior
        prior_text_encoder = self.dummy_prior_text_encoder

        scheduler = DDPMWuerstchenScheduler()
        tokenizer = self.dummy_tokenizer

        text_encoder = self.dummy_text_encoder
        decoder = self.dummy_decoder
        vqgan = self.dummy_vqgan

        components = {
            "tokenizer": tokenizer,
            "text_encoder": text_encoder,
            "decoder": decoder,
            "vqgan": vqgan,
            "scheduler": scheduler,
            "prior_prior": prior,
            "prior_text_encoder": prior_text_encoder,
            "prior_tokenizer": tokenizer,
            "prior_scheduler": scheduler,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "horse",
            "generator": generator,
            "prior_guidance_scale": 4.0,
Kashif Rasul's avatar
Kashif Rasul committed
163
            "decoder_guidance_scale": 4.0,
Kashif Rasul's avatar
Kashif Rasul committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
            "num_inference_steps": 2,
            "prior_num_inference_steps": 2,
            "output_type": "np",
            "height": 128,
            "width": 128,
        }
        return inputs

    def test_wuerstchen(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[-3:, -3:, -1]

        assert image.shape == (1, 128, 128, 3)

        expected_slice = np.array([0.7616304, 0.0, 1.0, 0.0, 1.0, 0.0, 0.05925313, 0.0, 0.951898])

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
        assert (
            np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"

    @require_torch_gpu
    def test_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_sequential_cpu_offload()
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_model_cpu_offload()
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=1e-2)

    @unittest.skip(reason="flakey and float16 requires CUDA")
    def test_float16_inference(self):
        super().test_float16_inference()
234
235
236
237
238
239

    def test_callback_inputs(self):
        pass

    def test_callback_cfg(self):
        pass