test_karras_ve.py 3.01 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import torch

from diffusers import KarrasVePipeline, KarrasVeScheduler, UNet2DModel
Dhruv Nair's avatar
Dhruv Nair committed
22
from diffusers.utils.testing_utils import enable_full_determinism, nightly, require_torch, torch_device
23
24


25
enable_full_determinism()
26
27


Patrick von Platen's avatar
Patrick von Platen committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
class KarrasVePipelineFastTests(unittest.TestCase):
    @property
    def dummy_uncond_unet(self):
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

    def test_inference(self):
        unet = self.dummy_uncond_unet
        scheduler = KarrasVeScheduler()

        pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        generator = torch.manual_seed(0)
        image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images

        generator = torch.manual_seed(0)
        image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
62

Patrick von Platen's avatar
Patrick von Platen committed
63
64
65
66
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2


Dhruv Nair's avatar
Dhruv Nair committed
67
@nightly
68
69
70
71
@require_torch
class KarrasVePipelineIntegrationTests(unittest.TestCase):
    def test_inference(self):
        model_id = "google/ncsnpp-celebahq-256"
72
        model = UNet2DModel.from_pretrained(model_id)
73
74
75
76
77
78
79
80
81
82
83
84
        scheduler = KarrasVeScheduler()

        pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        generator = torch.manual_seed(0)
        image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images

        image_slice = image[0, -3:, -3:, -1]
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586])
85

86
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2