convert_original_stable_diffusion_to_diffusers.py 4.37 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the LDM checkpoints. """

import argparse

19
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import load_pipeline_from_original_stable_diffusion_ckpt
20
21


22
23
24
25
26
27
28
29
30
31
32
33
34
if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
    )
    # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
    parser.add_argument(
        "--original_config_file",
        default=None,
        type=str,
        help="The YAML config file corresponding to the original architecture.",
    )
35
36
37
38
39
40
    parser.add_argument(
        "--num_in_channels",
        default=None,
        type=int,
        help="The number of input channels. If `None` number of input channels will be automatically inferred.",
    )
41
42
43
44
    parser.add_argument(
        "--scheduler_type",
        default="pndm",
        type=str,
45
        help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']",
46
    )
47
48
49
50
51
52
    parser.add_argument(
        "--pipeline_type",
        default=None,
        type=str,
        help="The pipeline type. If `None` pipeline will be automatically inferred.",
    )
53
54
    parser.add_argument(
        "--image_size",
55
        default=None,
56
57
58
59
60
61
        type=int,
        help=(
            "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2"
            " Base. Use 768 for Stable Diffusion v2."
        ),
    )
62
63
64
    parser.add_argument(
        "--prediction_type",
        default=None,
65
        type=str,
66
67
68
69
70
        help=(
            "The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable"
            " Siffusion v2 Base. Use 'v-prediction' for Stable Diffusion v2."
        ),
    )
71
72
73
74
75
76
77
78
79
    parser.add_argument(
        "--extract_ema",
        action="store_true",
        help=(
            "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights"
            " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield"
            " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning."
        ),
    )
80
    parser.add_argument(
81
        "--upcast_attention",
82
83
84
85
86
87
88
        default=False,
        type=bool,
        help=(
            "Whether the attention computation should always be upcasted. This is necessary when running stable"
            " diffusion 2.1."
        ),
    )
89
90
91
92
93
94
95
96
97
98
    parser.add_argument(
        "--from_safetensors",
        action="store_true",
        help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.",
    )
    parser.add_argument(
        "--to_safetensors",
        action="store_true",
        help="Whether to store pipeline in safetensors format or not.",
    )
99
    parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
100
    parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
101
102
    args = parser.parse_args()

103
104
105
106
107
108
109
110
111
112
113
114
115
    pipe = load_pipeline_from_original_stable_diffusion_ckpt(
        checkpoint_path=args.checkpoint_path,
        original_config_file=args.original_config_file,
        image_size=args.image_size,
        prediction_type=args.prediction_type,
        model_type=args.pipeline_type,
        extract_ema=args.extract_ema,
        scheduler_type=args.scheduler_type,
        num_in_channels=args.num_in_channels,
        upcast_attention=args.upcast_attention,
        from_safetensors=args.from_safetensors,
    )
    pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)