test_animatediff_video2video.py 14.1 KB
Newer Older
Aryan V S's avatar
Aryan V S committed
1
2
3
4
5
6
7
8
9
10
11
12
13
import unittest

import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

import diffusers
from diffusers import (
    AnimateDiffVideoToVideoPipeline,
    AutoencoderKL,
    DDIMScheduler,
    MotionAdapter,
14
    StableDiffusionPipeline,
Aryan V S's avatar
Aryan V S committed
15
16
17
18
19
20
21
    UNet2DConditionModel,
    UNetMotionModel,
)
from diffusers.utils import is_xformers_available, logging
from diffusers.utils.testing_utils import torch_device

from ..pipeline_params import TEXT_TO_IMAGE_PARAMS, VIDEO_TO_VIDEO_BATCH_PARAMS
22
from ..test_pipelines_common import IPAdapterTesterMixin, PipelineFromPipeTesterMixin, PipelineTesterMixin
Aryan V S's avatar
Aryan V S committed
23
24
25
26
27
28
29
30
31


def to_np(tensor):
    if isinstance(tensor, torch.Tensor):
        tensor = tensor.detach().cpu().numpy()

    return tensor


32
33
34
class AnimateDiffVideoToVideoPipelineFastTests(
    IPAdapterTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase
):
Aryan V S's avatar
Aryan V S committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
    pipeline_class = AnimateDiffVideoToVideoPipeline
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = VIDEO_TO_VIDEO_BATCH_PARAMS
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "generator",
            "latents",
            "return_dict",
            "callback_on_step_end",
            "callback_on_step_end_tensor_inputs",
        ]
    )

    def get_dummy_components(self):
50
51
52
        cross_attention_dim = 8
        block_out_channels = (8, 8)

Aryan V S's avatar
Aryan V S committed
53
54
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
55
            block_out_channels=block_out_channels,
Aryan V S's avatar
Aryan V S committed
56
            layers_per_block=2,
57
            sample_size=8,
Aryan V S's avatar
Aryan V S committed
58
59
60
61
            in_channels=4,
            out_channels=4,
            down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
62
            cross_attention_dim=cross_attention_dim,
Aryan V S's avatar
Aryan V S committed
63
64
65
66
67
68
69
70
71
72
            norm_num_groups=2,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="linear",
            clip_sample=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
73
            block_out_channels=block_out_channels,
Aryan V S's avatar
Aryan V S committed
74
75
76
77
78
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
79
            norm_num_groups=2,
Aryan V S's avatar
Aryan V S committed
80
81
82
83
84
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
85
            hidden_size=cross_attention_dim,
Aryan V S's avatar
Aryan V S committed
86
87
88
89
90
91
92
93
94
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
95
        torch.manual_seed(0)
Aryan V S's avatar
Aryan V S committed
96
        motion_adapter = MotionAdapter(
97
            block_out_channels=block_out_channels,
Aryan V S's avatar
Aryan V S committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
            motion_layers_per_block=2,
            motion_norm_num_groups=2,
            motion_num_attention_heads=4,
        )

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "motion_adapter": motion_adapter,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "feature_extractor": None,
            "image_encoder": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        video_height = 32
        video_width = 32
        video_num_frames = 2
        video = [Image.new("RGB", (video_width, video_height))] * video_num_frames

        inputs = {
            "video": video,
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 7.5,
            "output_type": "pt",
        }
        return inputs

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    def test_from_pipe_consistent_config(self):
        assert self.original_pipeline_class == StableDiffusionPipeline
        original_repo = "hf-internal-testing/tinier-stable-diffusion-pipe"
        original_kwargs = {"requires_safety_checker": False}

        # create original_pipeline_class(sd)
        pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs)

        # original_pipeline_class(sd) -> pipeline_class
        pipe_components = self.get_dummy_components()
        pipe_additional_components = {}
        for name, component in pipe_components.items():
            if name not in pipe_original.components:
                pipe_additional_components[name] = component

        pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components)

        # pipeline_class -> original_pipeline_class(sd)
        original_pipe_additional_components = {}
        for name, component in pipe_original.components.items():
            if name not in pipe.components or not isinstance(component, pipe.components[name].__class__):
                original_pipe_additional_components[name] = component

        pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components)

        # compare the config
        original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")}
        original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")}
        assert original_config_2 == original_config

Aryan V S's avatar
Aryan V S committed
166
167
168
169
170
171
172
173
174
175
    def test_motion_unet_loading(self):
        components = self.get_dummy_components()
        pipe = AnimateDiffVideoToVideoPipeline(**components)

        assert isinstance(pipe.unet, UNetMotionModel)

    @unittest.skip("Attention slicing is not enabled in this pipeline")
    def test_attention_slicing_forward_pass(self):
        pass

176
177
178
179
180
181
    def test_ip_adapter_single(self):
        expected_pipe_slice = None

        if torch_device == "cpu":
            expected_pipe_slice = np.array(
                [
182
183
184
185
186
                    0.5569,
                    0.6250,
                    0.4145,
                    0.5613,
                    0.5563,
187
                    0.5213,
188
189
190
191
192
193
194
195
196
197
198
199
                    0.5092,
                    0.4950,
                    0.4950,
                    0.5685,
                    0.3858,
                    0.4864,
                    0.6458,
                    0.4312,
                    0.5518,
                    0.5608,
                    0.4418,
                    0.5378,
200
201
202
203
                ]
            )
        return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)

Aryan V S's avatar
Aryan V S committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    def test_inference_batch_single_identical(
        self,
        batch_size=2,
        expected_max_diff=1e-4,
        additional_params_copy_to_batched_inputs=["num_inference_steps"],
    ):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for components in pipe.components.values():
            if hasattr(components, "set_default_attn_processor"):
                components.set_default_attn_processor()

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is has been used in self.get_dummy_inputs
        inputs["generator"] = self.get_generator(0)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
        batched_inputs.update(inputs)

        for name in self.batch_params:
            if name not in inputs:
                continue

            value = inputs[name]
            if name == "prompt":
                len_prompt = len(value)
                batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
                batched_inputs[name][-1] = 100 * "very long"

            else:
                batched_inputs[name] = batch_size * [value]

        if "generator" in inputs:
            batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]

        if "batch_size" in inputs:
            batched_inputs["batch_size"] = batch_size

        for arg in additional_params_copy_to_batched_inputs:
            batched_inputs[arg] = inputs[arg]

        output = pipe(**inputs)
        output_batch = pipe(**batched_inputs)

        assert output_batch[0].shape[0] == batch_size

        max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
        assert max_diff < expected_max_diff

    @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        # pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components
        model_devices = [
            component.device.type for component in pipe.components.values() if hasattr(component, "device")
        ]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

        pipe.to("cuda")
        model_devices = [
            component.device.type for component in pipe.components.values() if hasattr(component, "device")
        ]
        self.assertTrue(all(device == "cuda" for device in model_devices))

        output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
        self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)

    def test_to_dtype(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        # pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components
        model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))

293
        pipe.to(dtype=torch.float16)
Aryan V S's avatar
Aryan V S committed
294
295
296
297
298
299
300
301
302
303
304
        model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))

    def test_prompt_embeds(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        inputs.pop("prompt")
305
        inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device)
Aryan V S's avatar
Aryan V S committed
306
307
        pipe(**inputs)

308
309
310
311
312
313
314
    def test_latent_inputs(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
315
316
        sample_size = pipe.unet.config.sample_size
        inputs["latents"] = torch.randn((1, 4, 1, sample_size, sample_size), device=torch_device)
317
318
319
        inputs.pop("video")
        pipe(**inputs)

Aryan V S's avatar
Aryan V S committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs).frames[0]
        output_without_offload = (
            output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
        )

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs).frames[0]
        output_with_offload = (
            output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
        )

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
        self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results")
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

    def test_free_init(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)
        pipe.to(torch_device)

        inputs_normal = self.get_dummy_inputs(torch_device)
        frames_normal = pipe(**inputs_normal).frames[0]

        pipe.enable_free_init(
            num_iters=2,
            use_fast_sampling=True,
            method="butterworth",
            order=4,
            spatial_stop_frequency=0.25,
            temporal_stop_frequency=0.25,
        )
        inputs_enable_free_init = self.get_dummy_inputs(torch_device)
        frames_enable_free_init = pipe(**inputs_enable_free_init).frames[0]

        pipe.disable_free_init()
        inputs_disable_free_init = self.get_dummy_inputs(torch_device)
        frames_disable_free_init = pipe(**inputs_disable_free_init).frames[0]

        sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum()
        max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_init)).max()
        self.assertGreater(
            sum_enabled, 1e1, "Enabling of FreeInit should lead to results different from the default pipeline results"
        )
        self.assertLess(
            max_diff_disabled,
            1e-4,
            "Disabling of FreeInit should lead to results similar to the default pipeline results",
        )