test_stable_diffusion.py 22.2 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
22
23
24
25

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
26
    DPMSolverMultistepScheduler,
27
28
29
30
31
32
33
34
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
    logging,
)
35
from diffusers.utils import load_numpy, nightly, slow, torch_device
36
37
from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu

38
39
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
40
41
42
43
44
45


torch.backends.cuda.matmul.allow_tf32 = False


class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
46
    pipeline_class = StableDiffusionPipeline
47
48
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
49

50
    def get_dummy_components(self):
51
        torch.manual_seed(0)
52
        unet = UNet2DConditionModel(
53
54
55
56
57
58
59
60
61
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
            # SD2-specific config below
Will Berman's avatar
Will Berman committed
62
            attention_head_dim=(2, 4),
63
64
            use_linear_projection=True,
        )
65
66
67
68
69
70
71
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
72
        torch.manual_seed(0)
73
        vae = AutoencoderKL(
74
75
76
77
78
79
80
81
82
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
83
        text_encoder_config = CLIPTextConfig(
84
85
86
87
88
89
90
91
92
93
94
95
96
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=512,
        )
97
        text_encoder = CLIPTextModel(text_encoder_config)
98
99
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
124
125
126

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
127
128
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
129
130
131
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

132
133
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
134
135
136
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
137
        expected_slice = np.array([0.5753, 0.6113, 0.5005, 0.5036, 0.5464, 0.4725, 0.4982, 0.4865, 0.4861])
138
139
140
141
142

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
143
144
145
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
146
147
148
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

149
150
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
151
152
153
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
154
        expected_slice = np.array([0.5121, 0.5714, 0.4827, 0.5057, 0.5646, 0.4766, 0.5189, 0.4895, 0.4990])
155

156
157
158
159
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
160
161
162
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
163
164
165
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

166
167
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
168
169
170
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
171
        expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
172

173
174
175
176
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
177
178
179
        components = self.get_dummy_components()
        components["scheduler"] = EulerAncestralDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
180
181
182
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

183
184
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
185
186
187
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
188
        expected_slice = np.array([0.4864, 0.5440, 0.4842, 0.4994, 0.5543, 0.4846, 0.5196, 0.4942, 0.5063])
189

190
191
192
193
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
194
195
196
        components = self.get_dummy_components()
        components["scheduler"] = EulerDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
197
198
199
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

200
201
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
202
203
204
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
205
        expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
206

207
208
209
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_long_prompt(self):
210
211
212
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
            text_embeddings_3 = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
            text_embeddings = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
            text_embeddings_2 = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77

        assert cap_logger.out == cap_logger_2.out
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25
        assert cap_logger_3.out == ""


@slow
@require_torch_gpu
250
class StableDiffusion2PipelineSlowTests(unittest.TestCase):
251
252
253
254
255
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

256
257
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
258
259
260
261
262
263
264
265
266
267
268
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
269

270
271
272
273
    def test_stable_diffusion_default_ddim(self):
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
274

275
276
277
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
278
279

        assert image.shape == (1, 512, 512, 3)
280
281
        expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
282

283
284
285
286
287
    def test_stable_diffusion_pndm(self):
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
288

289
290
291
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
292
293

        assert image.shape == (1, 512, 512, 3)
294
295
        expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
296
297

    def test_stable_diffusion_k_lms(self):
298
299
300
301
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
302

303
304
305
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
306
307

        assert image.shape == (1, 512, 512, 3)
308
309
        expected_slice = np.array([0.10440, 0.13115, 0.11100, 0.10141, 0.11440, 0.07215, 0.11332, 0.09693, 0.10006])
        assert np.abs(image_slice - expected_slice).max() < 1e-4
310

311
    def test_stable_diffusion_attention_slicing(self):
312
        torch.cuda.reset_peak_memory_stats()
313
        pipe = StableDiffusionPipeline.from_pretrained(
314
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
315
316
        )
        pipe = pipe.to(torch_device)
317
318
        pipe.set_progress_bar_config(disable=None)

319
        # enable attention slicing
320
        pipe.enable_attention_slicing()
321
322
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
323
324
325

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
326
327
        # make sure that less than 3.3 GB is allocated
        assert mem_bytes < 3.3 * 10**9
328

329
        # disable slicing
330
        pipe.disable_attention_slicing()
331
332
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
333

334
        # make sure that more than 3.3 GB is allocated
335
        mem_bytes = torch.cuda.max_memory_allocated()
336
337
        assert mem_bytes > 3.3 * 10**9
        assert np.abs(image_sliced - image).max() < 1e-3
338
339
340
341

    def test_stable_diffusion_text2img_intermediate_state(self):
        number_of_steps = 0

342
343
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
344
345
            nonlocal number_of_steps
            number_of_steps += 1
346
            if step == 1:
347
348
349
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
350
351
352
353
354
                expected_slice = np.array(
                    [-0.3862, -0.4507, -1.1729, 0.0686, -1.1045, 0.7124, -1.8301, 0.1903, 1.2773]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
355
            elif step == 2:
356
357
358
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
359
360
361
362
363
                expected_slice = np.array(
                    [0.2720, -0.1863, -0.7383, -0.5029, -0.7534, 0.3970, -0.7646, 0.4468, 1.2686]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
364

365
        callback_fn.has_been_called = False
366
367

        pipe = StableDiffusionPipeline.from_pretrained(
368
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
369
370
371
372
373
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

374
375
376
377
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
378
379
380
381
382
383

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

384
        pipe = StableDiffusionPipeline.from_pretrained(
385
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
386
387
388
389
390
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
391

392
393
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
394
395
396
397

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
398

399
400
401
402
403
404
405
406
407
408
409
410
411
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-base",
            torch_dtype=torch.float16,
        )
412
        pipe.unet.set_default_attn_processor()
413
414
415
416
417
418
419
420
421
422
423
424
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-base",
            torch_dtype=torch.float16,
        )
425
        pipe.unet.set_default_attn_processor()
426
427
428
429
430
431
432

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
433
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

        assert np.abs(outputs.images - outputs_offloaded.images).max() < 1e-3
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3 * 10**9
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()
        assert mem_bytes_slicing < mem_bytes_offloaded

453
454
455
456
457
458
459
460
461

@nightly
@require_torch_gpu
class StableDiffusion2PipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

462
463
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_2_0_default_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_0_base_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_2_1_default_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_dpm_multi.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3