test_text_to_image.py 14.5 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import shutil
import sys
import tempfile

from diffusers import DiffusionPipeline, UNet2DConditionModel  # noqa: E402


sys.path.append("..")
from test_examples_utils import ExamplesTestsAccelerate, run_command  # noqa: E402


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


class TextToImage(ExamplesTestsAccelerate):
    def test_text_to_image(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/text_to_image/train_text_to_image.py
                --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe
                --dataset_name hf-internal-testing/dummy_image_text_data
                --resolution 64
                --center_crop
                --random_flip
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                """.split()

            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors")))
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))

    def test_text_to_image_checkpointing(self):
        pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"
        prompt = "a prompt"

        with tempfile.TemporaryDirectory() as tmpdir:
            # Run training script with checkpointing
67
            # max_train_steps == 4, checkpointing_steps == 2
68
69
70
71
72
73
74
75
76
77
78
            # Should create checkpoints at steps 2, 4

            initial_run_args = f"""
                examples/text_to_image/train_text_to_image.py
                --pretrained_model_name_or_path {pretrained_model_name_or_path}
                --dataset_name hf-internal-testing/dummy_image_text_data
                --resolution 64
                --center_crop
                --random_flip
                --train_batch_size 1
                --gradient_accumulation_steps 1
79
                --max_train_steps 4
80
81
82
83
84
85
86
87
88
89
90
91
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --checkpointing_steps=2
                --seed=0
                """.split()

            run_command(self._launch_args + initial_run_args)

            pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
92
            pipe(prompt, num_inference_steps=1)
93
94
95
96
97
98
99
100
101
102

            # check checkpoint directories exist
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
                {"checkpoint-2", "checkpoint-4"},
            )

            # check can run an intermediate checkpoint
            unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet")
            pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None)
103
            pipe(prompt, num_inference_steps=1)
104
105
106
107

            # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
            shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))

108
            # Run training script for 2 total steps resuming from checkpoint 4
109
110
111
112
113
114
115
116
117
118

            resume_run_args = f"""
                examples/text_to_image/train_text_to_image.py
                --pretrained_model_name_or_path {pretrained_model_name_or_path}
                --dataset_name hf-internal-testing/dummy_image_text_data
                --resolution 64
                --center_crop
                --random_flip
                --train_batch_size 1
                --gradient_accumulation_steps 1
119
                --max_train_steps 2
120
121
122
123
124
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
125
                --checkpointing_steps=1
126
127
128
129
130
131
132
133
                --resume_from_checkpoint=checkpoint-4
                --seed=0
                """.split()

            run_command(self._launch_args + resume_run_args)

            # check can run new fully trained pipeline
            pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
134
            pipe(prompt, num_inference_steps=1)
135

136
137
            # no checkpoint-2 -> check old checkpoints do not exist
            # check new checkpoints exist
138
139
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
140
                {"checkpoint-4", "checkpoint-5"},
141
142
143
144
145
146
147
148
            )

    def test_text_to_image_checkpointing_use_ema(self):
        pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"
        prompt = "a prompt"

        with tempfile.TemporaryDirectory() as tmpdir:
            # Run training script with checkpointing
149
            # max_train_steps == 4, checkpointing_steps == 2
150
151
152
153
154
155
156
157
158
159
160
            # Should create checkpoints at steps 2, 4

            initial_run_args = f"""
                examples/text_to_image/train_text_to_image.py
                --pretrained_model_name_or_path {pretrained_model_name_or_path}
                --dataset_name hf-internal-testing/dummy_image_text_data
                --resolution 64
                --center_crop
                --random_flip
                --train_batch_size 1
                --gradient_accumulation_steps 1
161
                --max_train_steps 4
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --checkpointing_steps=2
                --use_ema
                --seed=0
                """.split()

            run_command(self._launch_args + initial_run_args)

            pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
            pipe(prompt, num_inference_steps=2)

            # check checkpoint directories exist
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
                {"checkpoint-2", "checkpoint-4"},
            )

            # check can run an intermediate checkpoint
            unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet")
            pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None)
186
            pipe(prompt, num_inference_steps=1)
187
188
189
190

            # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
            shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))

191
            # Run training script for 2 total steps resuming from checkpoint 4
192
193
194
195
196
197
198
199
200
201

            resume_run_args = f"""
                examples/text_to_image/train_text_to_image.py
                --pretrained_model_name_or_path {pretrained_model_name_or_path}
                --dataset_name hf-internal-testing/dummy_image_text_data
                --resolution 64
                --center_crop
                --random_flip
                --train_batch_size 1
                --gradient_accumulation_steps 1
202
                --max_train_steps 2
203
204
205
206
207
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
208
                --checkpointing_steps=1
209
210
211
212
213
214
215
216
217
                --resume_from_checkpoint=checkpoint-4
                --use_ema
                --seed=0
                """.split()

            run_command(self._launch_args + resume_run_args)

            # check can run new fully trained pipeline
            pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
218
            pipe(prompt, num_inference_steps=1)
219

220
221
            # no checkpoint-2 -> check old checkpoints do not exist
            # check new checkpoints exist
222
223
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
224
                {"checkpoint-4", "checkpoint-5"},
225
226
227
228
229
230
231
232
            )

    def test_text_to_image_checkpointing_checkpoints_total_limit(self):
        pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"
        prompt = "a prompt"

        with tempfile.TemporaryDirectory() as tmpdir:
            # Run training script with checkpointing
233
            # max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2
234
235
236
237
238
239
240
241
242
243
244
245
            # Should create checkpoints at steps 2, 4, 6
            # with checkpoint at step 2 deleted

            initial_run_args = f"""
                examples/text_to_image/train_text_to_image.py
                --pretrained_model_name_or_path {pretrained_model_name_or_path}
                --dataset_name hf-internal-testing/dummy_image_text_data
                --resolution 64
                --center_crop
                --random_flip
                --train_batch_size 1
                --gradient_accumulation_steps 1
246
                --max_train_steps 6
247
248
249
250
251
252
253
254
255
256
257
258
259
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --checkpointing_steps=2
                --checkpoints_total_limit=2
                --seed=0
                """.split()

            run_command(self._launch_args + initial_run_args)

            pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
260
            pipe(prompt, num_inference_steps=1)
261
262

            # check checkpoint directories exist
263
264
            # checkpoint-2 should have been deleted
            self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"})
265
266
267
268
269
270
271

    def test_text_to_image_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
        pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"
        prompt = "a prompt"

        with tempfile.TemporaryDirectory() as tmpdir:
            # Run training script with checkpointing
272
273
            # max_train_steps == 4, checkpointing_steps == 2
            # Should create checkpoints at steps 2, 4
274
275
276
277
278
279
280
281
282
283

            initial_run_args = f"""
                examples/text_to_image/train_text_to_image.py
                --pretrained_model_name_or_path {pretrained_model_name_or_path}
                --dataset_name hf-internal-testing/dummy_image_text_data
                --resolution 64
                --center_crop
                --random_flip
                --train_batch_size 1
                --gradient_accumulation_steps 1
284
                --max_train_steps 4
285
286
287
288
289
290
291
292
293
294
295
296
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --checkpointing_steps=2
                --seed=0
                """.split()

            run_command(self._launch_args + initial_run_args)

            pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
297
            pipe(prompt, num_inference_steps=1)
298
299
300
301

            # check checkpoint directories exist
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
302
                {"checkpoint-2", "checkpoint-4"},
303
304
            )

305
            # resume and we should try to checkpoint at 6, where we'll have to remove
306
307
308
309
310
311
312
313
314
315
316
            # checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint

            resume_run_args = f"""
                examples/text_to_image/train_text_to_image.py
                --pretrained_model_name_or_path {pretrained_model_name_or_path}
                --dataset_name hf-internal-testing/dummy_image_text_data
                --resolution 64
                --center_crop
                --random_flip
                --train_batch_size 1
                --gradient_accumulation_steps 1
317
                --max_train_steps 8
318
319
320
321
322
323
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                --checkpointing_steps=2
324
325
                --resume_from_checkpoint=checkpoint-4
                --checkpoints_total_limit=2
326
327
328
329
330
331
                --seed=0
                """.split()

            run_command(self._launch_args + resume_run_args)

            pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
332
            pipe(prompt, num_inference_steps=1)
333
334
335
336

            # check checkpoint directories exist
            self.assertEqual(
                {x for x in os.listdir(tmpdir) if "checkpoint" in x},
337
                {"checkpoint-6", "checkpoint-8"},
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
            )


class TextToImageSDXL(ExamplesTestsAccelerate):
    def test_text_to_image_sdxl(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/text_to_image/train_text_to_image_sdxl.py
                --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe
                --dataset_name hf-internal-testing/dummy_image_text_data
                --resolution 64
                --center_crop
                --random_flip
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                """.split()

            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors")))
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))