train_text_to_image.py 45.5 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
3
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
15
# limitations under the License.
16

17
18
19
20
21
import argparse
import logging
import math
import os
import random
22
import shutil
23
from contextlib import nullcontext
24
25
from pathlib import Path

26
27
import accelerate
import datasets
28
29
30
31
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
32
import transformers
33
34
from accelerate import Accelerator
from accelerate.logging import get_logger
35
from accelerate.state import AcceleratorState
36
from accelerate.utils import ProjectConfiguration, set_seed
37
from datasets import load_dataset
38
from huggingface_hub import create_repo, upload_folder
39
from packaging import version
40
41
from torchvision import transforms
from tqdm.auto import tqdm
42
from transformers import CLIPTextModel, CLIPTokenizer
43
from transformers.utils import ContextManagers
44

45
46
47
import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
48
from diffusers.training_utils import EMAModel, compute_dream_and_update_latents, compute_snr
49
from diffusers.utils import check_min_version, deprecate, is_wandb_available, make_image_grid
50
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
51
from diffusers.utils.import_utils import is_xformers_available
52
from diffusers.utils.torch_utils import is_compiled_module
53

54

55
56
57
58
if is_wandb_available():
    import wandb


59
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
60
check_min_version("0.28.0.dev0")
61

62
logger = get_logger(__name__, log_level="INFO")
63

64
65
66
67
68
DATASET_NAME_MAPPING = {
    "lambdalabs/pokemon-blip-captions": ("image", "text"),
}


69
70
71
def save_model_card(
    args,
    repo_id: str,
72
73
    images: list = None,
    repo_folder: str = None,
74
75
76
77
78
79
80
):
    img_str = ""
    if len(images) > 0:
        image_grid = make_image_grid(images, 1, len(args.validation_prompts))
        image_grid.save(os.path.join(repo_folder, "val_imgs_grid.png"))
        img_str += "![val_imgs_grid](./val_imgs_grid.png)\n"

81
    model_description = f"""
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Text-to-image finetuning - {repo_id}

This pipeline was finetuned from **{args.pretrained_model_name_or_path}** on the **{args.dataset_name}** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: {args.validation_prompts}: \n
{img_str}

## Pipeline usage

You can use the pipeline like so:

```python
from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("{repo_id}", torch_dtype=torch.float16)
prompt = "{args.validation_prompts[0]}"
image = pipeline(prompt).images[0]
image.save("my_image.png")
```

## Training info

These are the key hyperparameters used during training:

* Epochs: {args.num_train_epochs}
* Learning rate: {args.learning_rate}
* Batch size: {args.train_batch_size}
* Gradient accumulation steps: {args.gradient_accumulation_steps}
* Image resolution: {args.resolution}
* Mixed-precision: {args.mixed_precision}

"""
    wandb_info = ""
    if is_wandb_available():
        wandb_run_url = None
        if wandb.run is not None:
            wandb_run_url = wandb.run.url

    if wandb_run_url is not None:
        wandb_info = f"""
More information on all the CLI arguments and the environment are available on your [`wandb` run page]({wandb_run_url}).
"""

124
    model_description += wandb_info
125

126
127
128
129
130
131
132
133
134
    model_card = load_or_create_model_card(
        repo_id_or_path=repo_id,
        from_training=True,
        license="creativeml-openrail-m",
        base_model=args.pretrained_model_name_or_path,
        model_description=model_description,
        inference=True,
    )

135
    tags = ["stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers", "diffusers-training"]
136
137
138
    model_card = populate_model_card(model_card, tags=tags)

    model_card.save(os.path.join(repo_folder, "README.md"))
139
140


141
142
143
144
145
def log_validation(vae, text_encoder, tokenizer, unet, args, accelerator, weight_dtype, epoch):
    logger.info("Running validation... ")

    pipeline = StableDiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
146
147
        vae=accelerator.unwrap_model(vae),
        text_encoder=accelerator.unwrap_model(text_encoder),
148
149
150
151
        tokenizer=tokenizer,
        unet=accelerator.unwrap_model(unet),
        safety_checker=None,
        revision=args.revision,
152
        variant=args.variant,
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        torch_dtype=weight_dtype,
    )
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    if args.enable_xformers_memory_efficient_attention:
        pipeline.enable_xformers_memory_efficient_attention()

    if args.seed is None:
        generator = None
    else:
        generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)

    images = []
    for i in range(len(args.validation_prompts)):
168
169
170
171
172
173
        if torch.backends.mps.is_available():
            autocast_ctx = nullcontext()
        else:
            autocast_ctx = torch.autocast(accelerator.device.type)

        with autocast_ctx:
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
            image = pipeline(args.validation_prompts[i], num_inference_steps=20, generator=generator).images[0]

        images.append(image)

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
            tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
        elif tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompts[i]}")
                        for i, image in enumerate(images)
                    ]
                }
            )
        else:
192
            logger.warning(f"image logging not implemented for {tracker.name}")
193
194
195
196

    del pipeline
    torch.cuda.empty_cache()

197
198
    return images

199
200
201

def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
202
    parser.add_argument(
203
        "--input_perturbation", type=float, default=0, help="The scale of input perturbation. Recommended 0.1."
204
    )
205
206
207
208
209
210
211
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
212
213
214
215
216
217
218
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
219
220
221
222
223
224
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--image_column", type=str, default="image", help="The column of the dataset containing an image."
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default="text",
        help="The column of the dataset containing a caption or a list of captions.",
    )
    parser.add_argument(
        "--max_train_samples",
        type=int,
        default=None,
        help=(
            "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        ),
    )
269
270
271
272
273
274
275
    parser.add_argument(
        "--validation_prompts",
        type=str,
        default=None,
        nargs="+",
        help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."),
    )
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    parser.add_argument(
        "--output_dir",
        type=str,
        default="sd-model-finetuned",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--center_crop",
patil-suraj's avatar
patil-suraj committed
300
        default=False,
301
        action="store_true",
patil-suraj's avatar
patil-suraj committed
302
303
304
305
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    )
    parser.add_argument(
        "--random_flip",
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
357
358
359
360
361
362
363
    parser.add_argument(
        "--snr_gamma",
        type=float,
        default=None,
        help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
        "More details here: https://arxiv.org/abs/2303.09556.",
    )
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    parser.add_argument(
        "--dream_training",
        action="store_true",
        help=(
            "Use the DREAM training method, which makes training more efficient and accurate at the ",
            "expense of doing an extra forward pass. See: https://arxiv.org/abs/2312.00210",
        ),
    )
    parser.add_argument(
        "--dream_detail_preservation",
        type=float,
        default=1.0,
        help="Dream detail preservation factor p (should be greater than 0; default=1.0, as suggested in the paper)",
    )
378
379
380
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
381
382
383
384
385
386
387
388
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
389
    parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
390
391
392
393
394
395
396
397
398
399
    parser.add_argument(
        "--non_ema_revision",
        type=str,
        default=None,
        required=False,
        help=(
            "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
            " remote repository specified with --pretrained_model_name_or_path."
        ),
    )
400
401
402
403
404
405
406
407
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
408
409
410
411
412
413
414
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
415
416
417
418
    parser.add_argument(
        "--prediction_type",
        type=str,
        default=None,
419
        help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediction_type` is chosen.",
420
    )
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
439
        default=None,
440
441
        choices=["no", "fp16", "bf16"],
        help=(
442
443
444
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
445
446
447
448
449
450
451
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
452
453
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
454
455
456
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
457
458
459
460
461
462
463
464
465
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
466
    parser.add_argument(
467
        "--checkpoints_total_limit",
468
469
        type=int,
        default=None,
470
        help=("Max number of checkpoints to store."),
471
    )
472
473
474
475
476
477
478
479
480
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
481
482
483
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
484
    parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.")
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=5,
        help="Run validation every X epochs.",
    )
    parser.add_argument(
        "--tracker_project_name",
        type=str,
        default="text2image-fine-tune",
        help=(
            "The `project_name` argument passed to Accelerator.init_trackers for"
            " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
        ),
    )
500
501
502
503
504
505
506
507
508
509

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    # Sanity checks
    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("Need either a dataset name or a training folder.")

510
511
512
513
    # default to using the same revision for the non-ema model if not specified
    if args.non_ema_revision is None:
        args.non_ema_revision = args.revision

514
515
516
517
518
    return args


def main():
    args = parse_args()
519

520
521
522
523
524
525
    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
            " Please use `huggingface-cli login` to authenticate with the Hub."
        )

526
527
528
529
530
531
532
533
534
    if args.non_ema_revision is not None:
        deprecate(
            "non_ema_revision!=None",
            "0.15.0",
            message=(
                "Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to"
                " use `--variant=non_ema` instead."
            ),
        )
535
536
    logging_dir = os.path.join(args.output_dir, args.logging_dir)

537
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
538

539
540
541
542
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
543
        project_config=accelerator_project_config,
544
545
    )

546
547
548
549
    # Disable AMP for MPS.
    if torch.backends.mps.is_available():
        accelerator.native_amp = False

Suraj Patil's avatar
Suraj Patil committed
550
    # Make one log on every process with the configuration for debugging.
551
552
553
554
555
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
556
557
558
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
Suraj Patil's avatar
Suraj Patil committed
559
        transformers.utils.logging.set_verbosity_warning()
560
561
562
563
564
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()
565
566
567
568
569
570
571

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
572
        if args.output_dir is not None:
573
574
            os.makedirs(args.output_dir, exist_ok=True)

575
576
577
578
579
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

580
581
    # Load scheduler, tokenizer and models.
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
582
583
584
    tokenizer = CLIPTokenizer.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
    )
585
586
587
588
589

    def deepspeed_zero_init_disabled_context_manager():
        """
        returns either a context list that includes one that will disable zero.Init or an empty context list
        """
590
        deepspeed_plugin = AcceleratorState().deepspeed_plugin if accelerate.state.is_initialized() else None
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
        if deepspeed_plugin is None:
            return []

        return [deepspeed_plugin.zero3_init_context_manager(enable=False)]

    # Currently Accelerate doesn't know how to handle multiple models under Deepspeed ZeRO stage 3.
    # For this to work properly all models must be run through `accelerate.prepare`. But accelerate
    # will try to assign the same optimizer with the same weights to all models during
    # `deepspeed.initialize`, which of course doesn't work.
    #
    # For now the following workaround will partially support Deepspeed ZeRO-3, by excluding the 2
    # frozen models from being partitioned during `zero.Init` which gets called during
    # `from_pretrained` So CLIPTextModel and AutoencoderKL will not enjoy the parameter sharding
    # across multiple gpus and only UNet2DConditionModel will get ZeRO sharded.
    with ContextManagers(deepspeed_zero_init_disabled_context_manager()):
        text_encoder = CLIPTextModel.from_pretrained(
607
            args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
608
609
        )
        vae = AutoencoderKL.from_pretrained(
610
            args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
611
612
        )

613
    unet = UNet2DConditionModel.from_pretrained(
614
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision
615
    )
616

617
    # Freeze vae and text_encoder and set unet to trainable
618
619
    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)
620
    unet.train()
621
622
623
624

    # Create EMA for the unet.
    if args.use_ema:
        ema_unet = UNet2DConditionModel.from_pretrained(
625
            args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
626
        )
627
        ema_unet = EMAModel(ema_unet.parameters(), model_cls=UNet2DConditionModel, model_config=ema_unet.config)
628

629
630
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
631
632
633
634
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
635
                logger.warning(
636
637
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
638
            unet.enable_xformers_memory_efficient_attention()
639
640
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
641

642
643
644
645
    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
646
647
648
            if accelerator.is_main_process:
                if args.use_ema:
                    ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema"))
649

650
651
                for i, model in enumerate(models):
                    model.save_pretrained(os.path.join(output_dir, "unet"))
652

653
654
                    # make sure to pop weight so that corresponding model is not saved again
                    weights.pop()
655
656
657
658
659

        def load_model_hook(models, input_dir):
            if args.use_ema:
                load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel)
                ema_unet.load_state_dict(load_model.state_dict())
660
                ema_unet.to(accelerator.device)
661
662
                del load_model

663
            for _ in range(len(models)):
664
665
666
667
668
669
670
671
672
673
674
675
676
                # pop models so that they are not loaded again
                model = models.pop()

                # load diffusers style into model
                load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

677
678
679
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()

680
681
682
683
684
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Initialize the optimizer
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
            )

        optimizer_cls = bnb.optim.AdamW8bit
    else:
        optimizer_cls = torch.optim.AdamW

    optimizer = optimizer_cls(
        unet.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
722
            data_dir=args.train_data_dir,
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
        )
    else:
        data_files = {}
        if args.train_data_dir is not None:
            data_files["train"] = os.path.join(args.train_data_dir, "**")
        dataset = load_dataset(
            "imagefolder",
            data_files=data_files,
            cache_dir=args.cache_dir,
        )
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    column_names = dataset["train"].column_names

    # 6. Get the column names for input/target.
741
    dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None)
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    if args.image_column is None:
        image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        image_column = args.image_column
        if image_column not in column_names:
            raise ValueError(
                f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}"
            )
    if args.caption_column is None:
        caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        caption_column = args.caption_column
        if caption_column not in column_names:
            raise ValueError(
                f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Preprocessing the datasets.
    # We need to tokenize input captions and transform the images.
    def tokenize_captions(examples, is_train=True):
        captions = []
        for caption in examples[caption_column]:
            if isinstance(caption, str):
                captions.append(caption)
            elif isinstance(caption, (list, np.ndarray)):
                # take a random caption if there are multiple
                captions.append(random.choice(caption) if is_train else caption[0])
            else:
                raise ValueError(
                    f"Caption column `{caption_column}` should contain either strings or lists of strings."
                )
773
774
775
776
        inputs = tokenizer(
            captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
        )
        return inputs.input_ids
777

Suraj Patil's avatar
Suraj Patil committed
778
    # Preprocessing the datasets.
779
780
    train_transforms = transforms.Compose(
        [
781
            transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
            transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
            transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
            transforms.ToTensor(),
            transforms.Normalize([0.5], [0.5]),
        ]
    )

    def preprocess_train(examples):
        images = [image.convert("RGB") for image in examples[image_column]]
        examples["pixel_values"] = [train_transforms(image) for image in images]
        examples["input_ids"] = tokenize_captions(examples)
        return examples

    with accelerator.main_process_first():
        if args.max_train_samples is not None:
            dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
        # Set the training transforms
        train_dataset = dataset["train"].with_transform(preprocess_train)

    def collate_fn(examples):
        pixel_values = torch.stack([example["pixel_values"] for example in examples])
        pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
804
805
        input_ids = torch.stack([example["input_ids"] for example in examples])
        return {"pixel_values": pixel_values, "input_ids": input_ids}
806

Suraj Patil's avatar
Suraj Patil committed
807
    # DataLoaders creation:
808
    train_dataloader = torch.utils.data.DataLoader(
809
810
811
812
813
        train_dataset,
        shuffle=True,
        collate_fn=collate_fn,
        batch_size=args.train_batch_size,
        num_workers=args.dataloader_num_workers,
814
815
816
817
818
819
820
821
822
823
824
825
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
826
827
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
828
829
    )

Suraj Patil's avatar
Suraj Patil committed
830
    # Prepare everything with our `accelerator`.
831
832
833
    unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        unet, optimizer, train_dataloader, lr_scheduler
    )
834

835
    if args.use_ema:
836
        ema_unet.to(accelerator.device)
837

838
    # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
839
    # as these weights are only used for inference, keeping weights in full precision is not required.
840
    weight_dtype = torch.float32
841
    if accelerator.mixed_precision == "fp16":
842
        weight_dtype = torch.float16
843
        args.mixed_precision = accelerator.mixed_precision
844
    elif accelerator.mixed_precision == "bf16":
845
        weight_dtype = torch.bfloat16
846
        args.mixed_precision = accelerator.mixed_precision
847

848
    # Move text_encode and vae to gpu and cast to weight_dtype
849
850
851
852
853
854
855
856
857
858
859
860
861
    text_encoder.to(accelerator.device, dtype=weight_dtype)
    vae.to(accelerator.device, dtype=weight_dtype)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
862
863
864
        tracker_config = dict(vars(args))
        tracker_config.pop("validation_prompts")
        accelerator.init_trackers(args.tracker_project_name, tracker_config)
865

866
867
868
869
870
871
    # Function for unwrapping if model was compiled with `torch.compile`.
    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

872
873
874
875
876
877
878
879
880
881
    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
882
883
884
    global_step = 0
    first_epoch = 0

Suraj Patil's avatar
Suraj Patil committed
885
    # Potentially load in the weights and states from a previous save
886
887
888
889
890
891
892
893
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
894
            path = dirs[-1] if len(dirs) > 0 else None
895

896
897
898
899
900
        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
901
            initial_global_step = 0
902
903
904
905
906
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

907
            initial_global_step = global_step
908
            first_epoch = global_step // num_update_steps_per_epoch
909

910
911
912
913
914
915
916
917
918
919
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
920

921
    for epoch in range(first_epoch, args.num_train_epochs):
922
923
924
925
926
        train_loss = 0.0
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
                # Convert images to latent space
                latents = vae.encode(batch["pixel_values"].to(weight_dtype)).latent_dist.sample()
927
                latents = latents * vae.config.scaling_factor
928
929
930

                # Sample noise that we'll add to the latents
                noise = torch.randn_like(latents)
931
932
933
934
935
                if args.noise_offset:
                    # https://www.crosslabs.org//blog/diffusion-with-offset-noise
                    noise += args.noise_offset * torch.randn(
                        (latents.shape[0], latents.shape[1], 1, 1), device=latents.device
                    )
936
937
                if args.input_perturbation:
                    new_noise = noise + args.input_perturbation * torch.randn_like(noise)
938
939
                bsz = latents.shape[0]
                # Sample a random timestep for each image
940
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
941
942
943
944
                timesteps = timesteps.long()

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
945
                if args.input_perturbation:
946
947
948
                    noisy_latents = noise_scheduler.add_noise(latents, new_noise, timesteps)
                else:
                    noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
949
950

                # Get the text embedding for conditioning
951
                encoder_hidden_states = text_encoder(batch["input_ids"], return_dict=False)[0]
952

953
                # Get the target for loss depending on the prediction type
954
955
956
957
                if args.prediction_type is not None:
                    # set prediction_type of scheduler if defined
                    noise_scheduler.register_to_config(prediction_type=args.prediction_type)

958
959
960
961
962
963
964
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

965
966
967
968
969
970
971
972
973
974
975
976
                if args.dream_training:
                    noisy_latents, target = compute_dream_and_update_latents(
                        unet,
                        noise_scheduler,
                        timesteps,
                        noise,
                        noisy_latents,
                        target,
                        encoder_hidden_states,
                        args.dream_detail_preservation,
                    )

977
                # Predict the noise residual and compute loss
978
                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states, return_dict=False)[0]
979
980
981
982
983
984
985

                if args.snr_gamma is None:
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
                else:
                    # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
                    # Since we predict the noise instead of x_0, the original formulation is slightly changed.
                    # This is discussed in Section 4.2 of the same paper.
986
                    snr = compute_snr(noise_scheduler, timesteps)
987
988
989
990
991
992
993
                    mse_loss_weights = torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(
                        dim=1
                    )[0]
                    if noise_scheduler.config.prediction_type == "epsilon":
                        mse_loss_weights = mse_loss_weights / snr
                    elif noise_scheduler.config.prediction_type == "v_prediction":
                        mse_loss_weights = mse_loss_weights / (snr + 1)
994

995
996
997
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
                    loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
                    loss = loss.mean()
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

                # Gather the losses across all processes for logging (if we use distributed training).
                avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
                train_loss += avg_loss.item() / args.gradient_accumulation_steps

                # Backpropagate
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                if args.use_ema:
1014
                    ema_unet.step(unet.parameters())
1015
1016
1017
1018
1019
                progress_bar.update(1)
                global_step += 1
                accelerator.log({"train_loss": train_loss}, step=global_step)
                train_loss = 0.0

1020
1021
                if global_step % args.checkpointing_steps == 0:
                    if accelerator.is_main_process:
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

1042
1043
1044
1045
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

1046
1047
1048
1049
1050
1051
            logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)

            if global_step >= args.max_train_steps:
                break

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
        if accelerator.is_main_process:
            if args.validation_prompts is not None and epoch % args.validation_epochs == 0:
                if args.use_ema:
                    # Store the UNet parameters temporarily and load the EMA parameters to perform inference.
                    ema_unet.store(unet.parameters())
                    ema_unet.copy_to(unet.parameters())
                log_validation(
                    vae,
                    text_encoder,
                    tokenizer,
                    unet,
                    args,
                    accelerator,
                    weight_dtype,
                    global_step,
                )
                if args.use_ema:
                    # Switch back to the original UNet parameters.
                    ema_unet.restore(unet.parameters())

1072
1073
1074
    # Create the pipeline using the trained modules and save it.
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
1075
        unet = unwrap_model(unet)
1076
1077
1078
        if args.use_ema:
            ema_unet.copy_to(unet.parameters())

1079
1080
        pipeline = StableDiffusionPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
1081
1082
            text_encoder=text_encoder,
            vae=vae,
1083
            unet=unet,
1084
            revision=args.revision,
1085
            variant=args.variant,
1086
1087
1088
        )
        pipeline.save_pretrained(args.output_dir)

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
        # Run a final round of inference.
        images = []
        if args.validation_prompts is not None:
            logger.info("Running inference for collecting generated images...")
            pipeline = pipeline.to(accelerator.device)
            pipeline.torch_dtype = weight_dtype
            pipeline.set_progress_bar_config(disable=True)

            if args.enable_xformers_memory_efficient_attention:
                pipeline.enable_xformers_memory_efficient_attention()

            if args.seed is None:
                generator = None
            else:
                generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)

            for i in range(len(args.validation_prompts)):
                with torch.autocast("cuda"):
                    image = pipeline(args.validation_prompts[i], num_inference_steps=20, generator=generator).images[0]
                images.append(image)

1110
        if args.push_to_hub:
1111
            save_model_card(args, repo_id, images, repo_folder=args.output_dir)
1112
1113
1114
1115
1116
1117
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1118
1119
1120
1121
1122
1123

    accelerator.end_training()


if __name__ == "__main__":
    main()