test_kandinsky_combined.py 12.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

from diffusers import (
    KandinskyV22CombinedPipeline,
    KandinskyV22Img2ImgCombinedPipeline,
    KandinskyV22InpaintCombinedPipeline,
)
Dhruv Nair's avatar
Dhruv Nair committed
25
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, torch_device
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

from ..test_pipelines_common import PipelineTesterMixin
from .test_kandinsky import Dummies
from .test_kandinsky_img2img import Dummies as Img2ImgDummies
from .test_kandinsky_inpaint import Dummies as InpaintDummies
from .test_kandinsky_prior import Dummies as PriorDummies


enable_full_determinism()


class KandinskyV22PipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = KandinskyV22CombinedPipeline
    params = [
        "prompt",
    ]
    batch_params = ["prompt", "negative_prompt"]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
        "guidance_scale",
        "negative_prompt",
        "num_inference_steps",
        "return_dict",
        "guidance_scale",
        "num_images_per_prompt",
        "output_type",
        "return_dict",
    ]
57
    test_xformers_attention = True
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

    def get_dummy_components(self):
        dummy = Dummies()
        prior_dummy = PriorDummies()
        components = dummy.get_dummy_components()

        components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()})
        return components

    def get_dummy_inputs(self, device, seed=0):
        prior_dummy = PriorDummies()
        inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed)
        inputs.update(
            {
                "height": 64,
                "width": 64,
            }
        )
        return inputs

    def test_kandinsky(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(
            **self.get_dummy_inputs(device),
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

        expected_slice = np.array([0.3013, 0.0471, 0.5176, 0.1817, 0.2566, 0.7076, 0.6712, 0.4421, 0.7503])

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
        assert (
            np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"

    @require_torch_gpu
    def test_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_model_cpu_offload()
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_sequential_cpu_offload()
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=1e-2)

140
141
142
    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=1e-1)

143
144
145
146
147
148
    def test_dict_tuple_outputs_equivalent(self):
        super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)

    def test_model_cpu_offload_forward_pass(self):
        super().test_model_cpu_offload_forward_pass(expected_max_diff=5e-4)

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

class KandinskyV22PipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = KandinskyV22Img2ImgCombinedPipeline
    params = ["prompt", "image"]
    batch_params = ["prompt", "negative_prompt", "image"]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
        "guidance_scale",
        "negative_prompt",
        "num_inference_steps",
        "return_dict",
        "guidance_scale",
        "num_images_per_prompt",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False

    def get_dummy_components(self):
        dummy = Img2ImgDummies()
        prior_dummy = PriorDummies()
        components = dummy.get_dummy_components()

        components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()})
        return components

    def get_dummy_inputs(self, device, seed=0):
        prior_dummy = PriorDummies()
        dummy = Img2ImgDummies()
        inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed)
        inputs.update(dummy.get_dummy_inputs(device=device, seed=seed))
        inputs.pop("image_embeds")
        inputs.pop("negative_image_embeds")
        return inputs

    def test_kandinsky(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(
            **self.get_dummy_inputs(device),
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

        expected_slice = np.array([0.4353, 0.4710, 0.5128, 0.4806, 0.5054, 0.5348, 0.5224, 0.4603, 0.5025])

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
        assert (
            np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"

    @require_torch_gpu
    def test_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_model_cpu_offload()
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_sequential_cpu_offload()
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=1e-2)

249
250
251
    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=1e-1)

252
253
254
255
256
257
    def test_dict_tuple_outputs_equivalent(self):
        super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)

    def test_model_cpu_offload_forward_pass(self):
        super().test_model_cpu_offload_forward_pass(expected_max_diff=5e-4)

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

class KandinskyV22PipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = KandinskyV22InpaintCombinedPipeline
    params = ["prompt", "image", "mask_image"]
    batch_params = ["prompt", "negative_prompt", "image", "mask_image"]
    required_optional_params = [
        "generator",
        "height",
        "width",
        "latents",
        "guidance_scale",
        "negative_prompt",
        "num_inference_steps",
        "return_dict",
        "guidance_scale",
        "num_images_per_prompt",
        "output_type",
        "return_dict",
    ]
    test_xformers_attention = False

    def get_dummy_components(self):
        dummy = InpaintDummies()
        prior_dummy = PriorDummies()
        components = dummy.get_dummy_components()

        components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()})
        return components

    def get_dummy_inputs(self, device, seed=0):
        prior_dummy = PriorDummies()
        dummy = InpaintDummies()
        inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed)
        inputs.update(dummy.get_dummy_inputs(device=device, seed=seed))
        inputs.pop("image_embeds")
        inputs.pop("negative_image_embeds")
        return inputs

    def test_kandinsky(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(device))
        image = output.images

        image_from_tuple = pipe(
            **self.get_dummy_inputs(device),
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

        expected_slice = np.array([0.5039, 0.4926, 0.4898, 0.4978, 0.4838, 0.4942, 0.4738, 0.4702, 0.4816])

        assert (
            np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
        assert (
            np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
        ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"

    @require_torch_gpu
    def test_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_model_cpu_offload()
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe.enable_sequential_cpu_offload()
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=1e-2)
357

358
359
360
    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=5e-1)

361
362
363
364
365
    def test_dict_tuple_outputs_equivalent(self):
        super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4)

    def test_model_cpu_offload_forward_pass(self):
        super().test_model_cpu_offload_forward_pass(expected_max_diff=5e-4)