test_models_unet_2d_condition.py 49 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import copy
17
import gc
18
import os
19
20
import tempfile
import unittest
21
from collections import OrderedDict
22
23

import torch
24
from parameterized import parameterized
25
from pytest import mark
26
27

from diffusers import UNet2DConditionModel
28
29
30
31
32
from diffusers.models.attention_processor import (
    CustomDiffusionAttnProcessor,
    IPAdapterAttnProcessor,
    IPAdapterAttnProcessor2_0,
)
33
from diffusers.models.embeddings import ImageProjection, IPAdapterPlusImageProjection
Dhruv Nair's avatar
Dhruv Nair committed
34
35
36
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
Arsalan's avatar
Arsalan committed
37
    backend_empty_cache,
Dhruv Nair's avatar
Dhruv Nair committed
38
    enable_full_determinism,
39
40
    floats_tensor,
    load_hf_numpy,
Arsalan's avatar
Arsalan committed
41
42
43
    require_torch_accelerator,
    require_torch_accelerator_with_fp16,
    require_torch_accelerator_with_training,
44
    require_torch_gpu,
Arsalan's avatar
Arsalan committed
45
    skip_mps,
46
47
48
49
50
    slow,
    torch_all_close,
    torch_device,
)

51
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
52
53
54


logger = logging.get_logger(__name__)
55
56

enable_full_determinism()
57
58


59
60
61
62
63
64
def create_ip_adapter_state_dict(model):
    # "ip_adapter" (cross-attention weights)
    ip_cross_attn_state_dict = {}
    key_id = 1

    for name in model.attn_processors.keys():
Aryan's avatar
Aryan committed
65
66
67
68
        cross_attention_dim = (
            None if name.endswith("attn1.processor") or "motion_module" in name else model.config.cross_attention_dim
        )

69
70
71
72
73
74
75
76
        if name.startswith("mid_block"):
            hidden_size = model.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(model.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = model.config.block_out_channels[block_id]
Aryan's avatar
Aryan committed
77

78
79
80
81
82
83
        if cross_attention_dim is not None:
            sd = IPAdapterAttnProcessor(
                hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0
            ).state_dict()
            ip_cross_attn_state_dict.update(
                {
84
85
                    f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"],
                    f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"],
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
                }
            )

            key_id += 2

    # "image_proj" (ImageProjection layer weights)
    cross_attention_dim = model.config["cross_attention_dim"]
    image_projection = ImageProjection(
        cross_attention_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, num_image_text_embeds=4
    )

    ip_image_projection_state_dict = {}
    sd = image_projection.state_dict()
    ip_image_projection_state_dict.update(
        {
            "proj.weight": sd["image_embeds.weight"],
            "proj.bias": sd["image_embeds.bias"],
            "norm.weight": sd["norm.weight"],
            "norm.bias": sd["norm.bias"],
        }
    )

    del sd
    ip_state_dict = {}
    ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict})
    return ip_state_dict


114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
def create_ip_adapter_plus_state_dict(model):
    # "ip_adapter" (cross-attention weights)
    ip_cross_attn_state_dict = {}
    key_id = 1

    for name in model.attn_processors.keys():
        cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = model.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(model.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = model.config.block_out_channels[block_id]
        if cross_attention_dim is not None:
            sd = IPAdapterAttnProcessor(
                hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0
            ).state_dict()
            ip_cross_attn_state_dict.update(
                {
135
136
                    f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"],
                    f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"],
137
138
139
140
141
142
143
                }
            )

            key_id += 2

    # "image_proj" (ImageProjection layer weights)
    cross_attention_dim = model.config["cross_attention_dim"]
144
    image_projection = IPAdapterPlusImageProjection(
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        embed_dims=cross_attention_dim, output_dims=cross_attention_dim, dim_head=32, heads=2, num_queries=4
    )

    ip_image_projection_state_dict = OrderedDict()
    for k, v in image_projection.state_dict().items():
        if "2.to" in k:
            k = k.replace("2.to", "0.to")
        elif "3.0.weight" in k:
            k = k.replace("3.0.weight", "1.0.weight")
        elif "3.0.bias" in k:
            k = k.replace("3.0.bias", "1.0.bias")
        elif "3.0.weight" in k:
            k = k.replace("3.0.weight", "1.0.weight")
        elif "3.1.net.0.proj.weight" in k:
            k = k.replace("3.1.net.0.proj.weight", "1.1.weight")
        elif "3.net.2.weight" in k:
            k = k.replace("3.net.2.weight", "1.3.weight")
        elif "layers.0.0" in k:
            k = k.replace("layers.0.0", "layers.0.0.norm1")
        elif "layers.0.1" in k:
            k = k.replace("layers.0.1", "layers.0.0.norm2")
        elif "layers.1.0" in k:
            k = k.replace("layers.1.0", "layers.1.0.norm1")
        elif "layers.1.1" in k:
            k = k.replace("layers.1.1", "layers.1.0.norm2")
        elif "layers.2.0" in k:
            k = k.replace("layers.2.0", "layers.2.0.norm1")
        elif "layers.2.1" in k:
            k = k.replace("layers.2.1", "layers.2.0.norm2")

        if "norm_cross" in k:
            ip_image_projection_state_dict[k.replace("norm_cross", "norm1")] = v
        elif "layer_norm" in k:
            ip_image_projection_state_dict[k.replace("layer_norm", "norm2")] = v
        elif "to_k" in k:
            ip_image_projection_state_dict[k.replace("to_k", "to_kv")] = torch.cat([v, v], dim=0)
        elif "to_v" in k:
            continue
        elif "to_out.0" in k:
            ip_image_projection_state_dict[k.replace("to_out.0", "to_out")] = v
        else:
            ip_image_projection_state_dict[k] = v

    ip_state_dict = {}
    ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict})
    return ip_state_dict


193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
def create_custom_diffusion_layers(model, mock_weights: bool = True):
    train_kv = True
    train_q_out = True
    custom_diffusion_attn_procs = {}

    st = model.state_dict()
    for name, _ in model.attn_processors.items():
        cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = model.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(model.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = model.config.block_out_channels[block_id]
        layer_name = name.split(".processor")[0]
        weights = {
            "to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"],
            "to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"],
        }
        if train_q_out:
            weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"]
            weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"]
            weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"]
        if cross_attention_dim is not None:
            custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor(
                train_kv=train_kv,
                train_q_out=train_q_out,
                hidden_size=hidden_size,
                cross_attention_dim=cross_attention_dim,
            ).to(model.device)
            custom_diffusion_attn_procs[name].load_state_dict(weights)
            if mock_weights:
                # add 1 to weights to mock trained weights
                with torch.no_grad():
                    custom_diffusion_attn_procs[name].to_k_custom_diffusion.weight += 1
                    custom_diffusion_attn_procs[name].to_v_custom_diffusion.weight += 1
        else:
            custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor(
                train_kv=False,
                train_q_out=False,
                hidden_size=hidden_size,
                cross_attention_dim=cross_attention_dim,
            )
    del st
    return custom_diffusion_attn_procs


242
class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
243
    model_class = UNet2DConditionModel
244
    main_input_name = "sample"
245
246
247
248
249

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 4
250
        sizes = (16, 16)
251
252
253

        noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        time_step = torch.tensor([10]).to(torch_device)
254
        encoder_hidden_states = floats_tensor((batch_size, 4, 8)).to(torch_device)
255
256
257
258
259

        return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}

    @property
    def input_shape(self):
260
        return (4, 16, 16)
261
262
263

    @property
    def output_shape(self):
264
        return (4, 16, 16)
265
266
267

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
268
269
            "block_out_channels": (4, 8),
            "norm_num_groups": 4,
270
271
            "down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"),
            "up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"),
272
273
            "cross_attention_dim": 8,
            "attention_head_dim": 2,
274
275
            "out_channels": 4,
            "in_channels": 4,
276
277
            "layers_per_block": 1,
            "sample_size": 16,
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_enable_works(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)

        model.enable_xformers_memory_efficient_attention()

        assert (
293
            model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
Patrick von Platen's avatar
Patrick von Platen committed
294
            == "XFormersAttnProcessor"
295
296
        ), "xformers is not enabled"

Arsalan's avatar
Arsalan committed
297
    @require_torch_accelerator_with_training
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    def test_gradient_checkpointing(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < 1e-5)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())
        for name, param in named_params.items():
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))

    def test_model_with_attention_head_dim_tuple(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

341
        init_dict["block_out_channels"] = (16, 32)
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_model_with_use_linear_projection(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        init_dict["use_linear_projection"] = True

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

Sanchit Gandhi's avatar
Sanchit Gandhi committed
377
378
379
    def test_model_with_cross_attention_dim_tuple(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

380
        init_dict["cross_attention_dim"] = (8, 8)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_model_with_simple_projection(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        batch_size, _, _, sample_size = inputs_dict["sample"].shape

        init_dict["class_embed_type"] = "simple_projection"
        init_dict["projection_class_embeddings_input_dim"] = sample_size

        inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

    def test_model_with_class_embeddings_concat(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        batch_size, _, _, sample_size = inputs_dict["sample"].shape

        init_dict["class_embed_type"] = "simple_projection"
        init_dict["projection_class_embeddings_input_dim"] = sample_size
        init_dict["class_embeddings_concat"] = True

        inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            output = model(**inputs_dict)

            if isinstance(output, dict):
                output = output.sample

        self.assertIsNotNone(output)
        expected_shape = inputs_dict["sample"].shape
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

445
446
447
    def test_model_attention_slicing(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

448
        init_dict["block_out_channels"] = (16, 32)
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)
        model.eval()

        model.set_attention_slice("auto")
        with torch.no_grad():
            output = model(**inputs_dict)
        assert output is not None

        model.set_attention_slice("max")
        with torch.no_grad():
            output = model(**inputs_dict)
        assert output is not None

        model.set_attention_slice(2)
        with torch.no_grad():
            output = model(**inputs_dict)
        assert output is not None

Alexander Pivovarov's avatar
Alexander Pivovarov committed
470
    def test_model_sliceable_head_dim(self):
471
472
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

473
        init_dict["block_out_channels"] = (16, 32)
474
475
476
477
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)

Alexander Pivovarov's avatar
Alexander Pivovarov committed
478
        def check_sliceable_dim_attr(module: torch.nn.Module):
479
480
481
482
            if hasattr(module, "set_attention_slice"):
                assert isinstance(module.sliceable_head_dim, int)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
483
                check_sliceable_dim_attr(child)
484
485
486

        # retrieve number of attention layers
        for module in model.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
487
            check_sliceable_dim_attr(module)
488

489
490
491
    def test_gradient_checkpointing_is_applied(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

492
        init_dict["block_out_channels"] = (16, 32)
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        init_dict["attention_head_dim"] = (8, 16)

        model_class_copy = copy.copy(self.model_class)

        modules_with_gc_enabled = {}

        # now monkey patch the following function:
        #     def _set_gradient_checkpointing(self, module, value=False):
        #         if hasattr(module, "gradient_checkpointing"):
        #             module.gradient_checkpointing = value

        def _set_gradient_checkpointing_new(self, module, value=False):
            if hasattr(module, "gradient_checkpointing"):
                module.gradient_checkpointing = value
                modules_with_gc_enabled[module.__class__.__name__] = True

        model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new

        model = model_class_copy(**init_dict)
        model.enable_gradient_checkpointing()

        EXPECTED_SET = {
            "CrossAttnUpBlock2D",
            "CrossAttnDownBlock2D",
            "UNetMidBlock2DCrossAttn",
            "UpBlock2D",
            "Transformer2DModel",
            "DownBlock2D",
        }

        assert set(modules_with_gc_enabled.keys()) == EXPECTED_SET
        assert all(modules_with_gc_enabled.values()), "All modules should be enabled"

526
527
528
529
530
531
532
533
534
535
536
    def test_special_attn_proc(self):
        class AttnEasyProc(torch.nn.Module):
            def __init__(self, num):
                super().__init__()
                self.weight = torch.nn.Parameter(torch.tensor(num))
                self.is_run = False
                self.number = 0
                self.counter = 0

            def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None):
                batch_size, sequence_length, _ = hidden_states.shape
537
                attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

                query = attn.to_q(hidden_states)

                encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
                key = attn.to_k(encoder_hidden_states)
                value = attn.to_v(encoder_hidden_states)

                query = attn.head_to_batch_dim(query)
                key = attn.head_to_batch_dim(key)
                value = attn.head_to_batch_dim(value)

                attention_probs = attn.get_attention_scores(query, key, attention_mask)
                hidden_states = torch.bmm(attention_probs, value)
                hidden_states = attn.batch_to_head_dim(hidden_states)

                # linear proj
                hidden_states = attn.to_out[0](hidden_states)
                # dropout
                hidden_states = attn.to_out[1](hidden_states)

                hidden_states += self.weight

                self.is_run = True
                self.counter += 1
                self.number = number

                return hidden_states

        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

569
        init_dict["block_out_channels"] = (16, 32)
570
571
572
573
574
575
576
577
578
579
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)

        processor = AttnEasyProc(5.0)

        model.set_attn_processor(processor)
        model(**inputs_dict, cross_attention_kwargs={"number": 123}).sample

580
        assert processor.counter == 8
581
582
583
        assert processor.is_run
        assert processor.number == 123

584
585
586
587
588
589
590
591
592
593
594
595
    @parameterized.expand(
        [
            # fmt: off
            [torch.bool],
            [torch.long],
            [torch.float],
            # fmt: on
        ]
    )
    def test_model_xattn_mask(self, mask_dtype):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

596
        model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16), "block_out_channels": (16, 32)})
597
598
599
600
601
602
603
604
605
606
607
        model.to(torch_device)
        model.eval()

        cond = inputs_dict["encoder_hidden_states"]
        with torch.no_grad():
            full_cond_out = model(**inputs_dict).sample
            assert full_cond_out is not None

            keepall_mask = torch.ones(*cond.shape[:-1], device=cond.device, dtype=mask_dtype)
            full_cond_keepallmask_out = model(**{**inputs_dict, "encoder_attention_mask": keepall_mask}).sample
            assert full_cond_keepallmask_out.allclose(
608
                full_cond_out, rtol=1e-05, atol=1e-05
609
610
611
612
613
            ), "a 'keep all' mask should give the same result as no mask"

            trunc_cond = cond[:, :-1, :]
            trunc_cond_out = model(**{**inputs_dict, "encoder_hidden_states": trunc_cond}).sample
            assert not trunc_cond_out.allclose(
614
                full_cond_out, rtol=1e-05, atol=1e-05
615
616
617
618
619
620
            ), "discarding the last token from our cond should change the result"

            batch, tokens, _ = cond.shape
            mask_last = (torch.arange(tokens) < tokens - 1).expand(batch, -1).to(cond.device, mask_dtype)
            masked_cond_out = model(**{**inputs_dict, "encoder_attention_mask": mask_last}).sample
            assert masked_cond_out.allclose(
621
                trunc_cond_out, rtol=1e-05, atol=1e-05
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
            ), "masking the last token from our cond should be equivalent to truncating that token out of the condition"

    # see diffusers.models.attention_processor::Attention#prepare_attention_mask
    # note: we may not need to fix mask padding to work for stable-diffusion cross-attn masks.
    # since the use-case (somebody passes in a too-short cross-attn mask) is pretty esoteric.
    # maybe it's fine that this only works for the unclip use-case.
    @mark.skip(
        reason="we currently pad mask by target_length tokens (what unclip needs), whereas stable-diffusion's cross-attn needs to instead pad by remaining_length."
    )
    def test_model_xattn_padding(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)})
        model.to(torch_device)
        model.eval()

        cond = inputs_dict["encoder_hidden_states"]
        with torch.no_grad():
            full_cond_out = model(**inputs_dict).sample
            assert full_cond_out is not None

            batch, tokens, _ = cond.shape
            keeplast_mask = (torch.arange(tokens) == tokens - 1).expand(batch, -1).to(cond.device, torch.bool)
            keeplast_out = model(**{**inputs_dict, "encoder_attention_mask": keeplast_mask}).sample
            assert not keeplast_out.allclose(full_cond_out), "a 'keep last token' mask should change the result"

            trunc_mask = torch.zeros(batch, tokens - 1, device=cond.device, dtype=torch.bool)
            trunc_mask_out = model(**{**inputs_dict, "encoder_attention_mask": trunc_mask}).sample
            assert trunc_mask_out.allclose(
                keeplast_out
            ), "a mask with fewer tokens than condition, will be padded with 'keep' tokens. a 'discard-all' mask missing the final token is thus equivalent to a 'keep last' mask."

654
655
656
657
    def test_custom_diffusion_processors(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

658
        init_dict["block_out_channels"] = (16, 32)
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            sample1 = model(**inputs_dict).sample

        custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False)

        # make sure we can set a list of attention processors
        model.set_attn_processor(custom_diffusion_attn_procs)
        model.to(torch_device)

        # test that attn processors can be set to itself
        model.set_attn_processor(model.attn_processors)

        with torch.no_grad():
            sample2 = model(**inputs_dict).sample

679
        assert (sample1 - sample2).abs().max() < 3e-3
680
681
682
683
684

    def test_custom_diffusion_save_load(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

685
        init_dict["block_out_channels"] = (16, 32)
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
        init_dict["attention_head_dim"] = (8, 16)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            old_sample = model(**inputs_dict).sample

        custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False)
        model.set_attn_processor(custom_diffusion_attn_procs)

        with torch.no_grad():
            sample = model(**inputs_dict).sample

        with tempfile.TemporaryDirectory() as tmpdirname:
702
            model.save_attn_procs(tmpdirname, safe_serialization=False)
703
704
705
706
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_custom_diffusion_weights.bin")))
            torch.manual_seed(0)
            new_model = self.model_class(**init_dict)
            new_model.load_attn_procs(tmpdirname, weight_name="pytorch_custom_diffusion_weights.bin")
707
            new_model.to(torch_device)
708
709
710
711
712
713
714

        with torch.no_grad():
            new_sample = new_model(**inputs_dict).sample

        assert (sample - new_sample).abs().max() < 1e-4

        # custom diffusion and no custom diffusion should be the same
715
        assert (sample - old_sample).abs().max() < 3e-3
716
717
718
719
720
721
722
723
724

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_custom_diffusion_xformers_on_off(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

725
        init_dict["block_out_channels"] = (16, 32)
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
        init_dict["attention_head_dim"] = (8, 16)

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)
        custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False)
        model.set_attn_processor(custom_diffusion_attn_procs)

        # default
        with torch.no_grad():
            sample = model(**inputs_dict).sample

            model.enable_xformers_memory_efficient_attention()
            on_sample = model(**inputs_dict).sample

            model.disable_xformers_memory_efficient_attention()
            off_sample = model(**inputs_dict).sample

        assert (sample - on_sample).abs().max() < 1e-4
        assert (sample - off_sample).abs().max() < 1e-4

747
748
749
750
    def test_pickle(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

751
        init_dict["block_out_channels"] = (16, 32)
752
753
754
755
756
757
758
759
760
761
762
763
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)

        with torch.no_grad():
            sample = model(**inputs_dict).sample

        sample_copy = copy.copy(sample)

        assert (sample - sample_copy).abs().max() < 1e-4

764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
    def test_asymmetrical_unet(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        # Add asymmetry to configs
        init_dict["transformer_layers_per_block"] = [[3, 2], 1]
        init_dict["reverse_transformer_layers_per_block"] = [[3, 4], 1]

        torch.manual_seed(0)
        model = self.model_class(**init_dict)
        model.to(torch_device)

        output = model(**inputs_dict).sample
        expected_shape = inputs_dict["sample"].shape

        # Check if input and output shapes are the same
        self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")

780
781
782
    def test_ip_adapter(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

783
        init_dict["block_out_channels"] = (16, 32)
784
785
786
787
788
789
790
791
792
793
794
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)

        # forward pass without ip-adapter
        with torch.no_grad():
            sample1 = model(**inputs_dict).sample

        # update inputs_dict for ip-adapter
        batch_size = inputs_dict["encoder_hidden_states"].shape[0]
795
        # for ip-adapter image_embeds has shape [batch_size, num_image, embed_dim]
796
        image_embeds = floats_tensor((batch_size, 1, model.config.cross_attention_dim)).to(torch_device)
797
        inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds]}
798
799
800
801
802
803
804
805
806
807

        # make ip_adapter_1 and ip_adapter_2
        ip_adapter_1 = create_ip_adapter_state_dict(model)

        image_proj_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["image_proj"].items()}
        cross_attn_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["ip_adapter"].items()}
        ip_adapter_2 = {}
        ip_adapter_2.update({"image_proj": image_proj_state_dict_2, "ip_adapter": cross_attn_state_dict_2})

        # forward pass ip_adapter_1
808
        model._load_ip_adapter_weights([ip_adapter_1])
809
810
811
812
813
814
815
        assert model.config.encoder_hid_dim_type == "ip_image_proj"
        assert model.encoder_hid_proj is not None
        assert model.down_blocks[0].attentions[0].transformer_blocks[0].attn2.processor.__class__.__name__ in (
            "IPAdapterAttnProcessor",
            "IPAdapterAttnProcessor2_0",
        )
        with torch.no_grad():
816
817
818
            sample2 = model(**inputs_dict).sample

        # forward pass with ip_adapter_2
819
        model._load_ip_adapter_weights([ip_adapter_2])
820
821
822
823
        with torch.no_grad():
            sample3 = model(**inputs_dict).sample

        # forward pass with ip_adapter_1 again
824
        model._load_ip_adapter_weights([ip_adapter_1])
825
826
827
        with torch.no_grad():
            sample4 = model(**inputs_dict).sample

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
        # forward pass with multiple ip-adapters and multiple images
        model._load_ip_adapter_weights([ip_adapter_1, ip_adapter_2])
        # set the scale for ip_adapter_2 to 0 so that result should be same as only load ip_adapter_1
        for attn_processor in model.attn_processors.values():
            if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)):
                attn_processor.scale = [1, 0]
        image_embeds_multi = image_embeds.repeat(1, 2, 1)
        inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds_multi, image_embeds_multi]}
        with torch.no_grad():
            sample5 = model(**inputs_dict).sample

        # forward pass with single ip-adapter & single image when image_embeds is not a list and a 2-d tensor
        image_embeds = image_embeds.squeeze(1)
        inputs_dict["added_cond_kwargs"] = {"image_embeds": image_embeds}

        model._load_ip_adapter_weights(ip_adapter_1)
        with torch.no_grad():
            sample6 = model(**inputs_dict).sample

847
848
849
        assert not sample1.allclose(sample2, atol=1e-4, rtol=1e-4)
        assert not sample2.allclose(sample3, atol=1e-4, rtol=1e-4)
        assert sample2.allclose(sample4, atol=1e-4, rtol=1e-4)
850
851
        assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4)
        assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4)
852
853
854
855

    def test_ip_adapter_plus(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

856
        init_dict["block_out_channels"] = (16, 32)
857
858
859
860
861
862
863
864
865
866
867
        init_dict["attention_head_dim"] = (8, 16)

        model = self.model_class(**init_dict)
        model.to(torch_device)

        # forward pass without ip-adapter
        with torch.no_grad():
            sample1 = model(**inputs_dict).sample

        # update inputs_dict for ip-adapter
        batch_size = inputs_dict["encoder_hidden_states"].shape[0]
868
        # for ip-adapter-plus image_embeds has shape [batch_size, num_image, sequence_length, embed_dim]
869
        image_embeds = floats_tensor((batch_size, 1, 1, model.config.cross_attention_dim)).to(torch_device)
870
        inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds]}
871
872
873
874
875
876
877
878
879
880

        # make ip_adapter_1 and ip_adapter_2
        ip_adapter_1 = create_ip_adapter_plus_state_dict(model)

        image_proj_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["image_proj"].items()}
        cross_attn_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["ip_adapter"].items()}
        ip_adapter_2 = {}
        ip_adapter_2.update({"image_proj": image_proj_state_dict_2, "ip_adapter": cross_attn_state_dict_2})

        # forward pass ip_adapter_1
881
        model._load_ip_adapter_weights([ip_adapter_1])
882
883
884
885
886
887
888
        assert model.config.encoder_hid_dim_type == "ip_image_proj"
        assert model.encoder_hid_proj is not None
        assert model.down_blocks[0].attentions[0].transformer_blocks[0].attn2.processor.__class__.__name__ in (
            "IPAdapterAttnProcessor",
            "IPAdapterAttnProcessor2_0",
        )
        with torch.no_grad():
889
890
891
            sample2 = model(**inputs_dict).sample

        # forward pass with ip_adapter_2
892
        model._load_ip_adapter_weights([ip_adapter_2])
893
894
895
896
        with torch.no_grad():
            sample3 = model(**inputs_dict).sample

        # forward pass with ip_adapter_1 again
897
        model._load_ip_adapter_weights([ip_adapter_1])
898
899
900
        with torch.no_grad():
            sample4 = model(**inputs_dict).sample

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
        # forward pass with multiple ip-adapters and multiple images
        model._load_ip_adapter_weights([ip_adapter_1, ip_adapter_2])
        # set the scale for ip_adapter_2 to 0 so that result should be same as only load ip_adapter_1
        for attn_processor in model.attn_processors.values():
            if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)):
                attn_processor.scale = [1, 0]
        image_embeds_multi = image_embeds.repeat(1, 2, 1, 1)
        inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds_multi, image_embeds_multi]}
        with torch.no_grad():
            sample5 = model(**inputs_dict).sample

        # forward pass with single ip-adapter & single image when image_embeds is a 3-d tensor
        image_embeds = image_embeds[:,].squeeze(1)
        inputs_dict["added_cond_kwargs"] = {"image_embeds": image_embeds}

        model._load_ip_adapter_weights(ip_adapter_1)
        with torch.no_grad():
            sample6 = model(**inputs_dict).sample

920
921
922
        assert not sample1.allclose(sample2, atol=1e-4, rtol=1e-4)
        assert not sample2.allclose(sample3, atol=1e-4, rtol=1e-4)
        assert sample2.allclose(sample4, atol=1e-4, rtol=1e-4)
923
924
        assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4)
        assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4)
925

926
927
928
929
930
931
932
933
934
935

@slow
class UNet2DConditionModelIntegrationTests(unittest.TestCase):
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
936
        backend_empty_cache(torch_device)
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

    def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"):
        revision = "fp16" if fp16 else None
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = UNet2DConditionModel.from_pretrained(
            model_id, subfolder="unet", torch_dtype=torch_dtype, revision=revision
        )
        model.to(torch_device).eval()

        return model

Arsalan's avatar
Arsalan committed
954
    @require_torch_gpu
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
    def test_set_attention_slice_auto(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        unet = self.get_unet_model()
        unet.set_attention_slice("auto")

        latents = self.get_latents(33)
        encoder_hidden_states = self.get_encoder_hidden_states(33)
        timestep = 1

        with torch.no_grad():
            _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        mem_bytes = torch.cuda.max_memory_allocated()

        assert mem_bytes < 5 * 10**9

Arsalan's avatar
Arsalan committed
974
    @require_torch_gpu
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
    def test_set_attention_slice_max(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        unet = self.get_unet_model()
        unet.set_attention_slice("max")

        latents = self.get_latents(33)
        encoder_hidden_states = self.get_encoder_hidden_states(33)
        timestep = 1

        with torch.no_grad():
            _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        mem_bytes = torch.cuda.max_memory_allocated()

        assert mem_bytes < 5 * 10**9

Arsalan's avatar
Arsalan committed
994
    @require_torch_gpu
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
    def test_set_attention_slice_int(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        unet = self.get_unet_model()
        unet.set_attention_slice(2)

        latents = self.get_latents(33)
        encoder_hidden_states = self.get_encoder_hidden_states(33)
        timestep = 1

        with torch.no_grad():
            _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        mem_bytes = torch.cuda.max_memory_allocated()

        assert mem_bytes < 5 * 10**9

Arsalan's avatar
Arsalan committed
1014
    @require_torch_gpu
1015
1016
1017
1018
1019
    def test_set_attention_slice_list(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

Alexander Pivovarov's avatar
Alexander Pivovarov committed
1020
        # there are 32 sliceable layers
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
        slice_list = 16 * [2, 3]
        unet = self.get_unet_model()
        unet.set_attention_slice(slice_list)

        latents = self.get_latents(33)
        encoder_hidden_states = self.get_encoder_hidden_states(33)
        timestep = 1

        with torch.no_grad():
            _ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        mem_bytes = torch.cuda.max_memory_allocated()

        assert mem_bytes < 5 * 10**9

    def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return hidden_states

    @parameterized.expand(
        [
            # fmt: off
            [33, 4, [-0.4424, 0.1510, -0.1937, 0.2118, 0.3746, -0.3957, 0.0160, -0.0435]],
            [47, 0.55, [-0.1508, 0.0379, -0.3075, 0.2540, 0.3633, -0.0821, 0.1719, -0.0207]],
            [21, 0.89, [-0.6479, 0.6364, -0.3464, 0.8697, 0.4443, -0.6289, -0.0091, 0.1778]],
            [9, 1000, [0.8888, -0.5659, 0.5834, -0.7469, 1.1912, -0.3923, 1.1241, -0.4424]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1051
    @require_torch_accelerator_with_fp16
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
    def test_compvis_sd_v1_4(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4")
        latents = self.get_latents(seed)
        encoder_hidden_states = self.get_encoder_hidden_states(seed)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)

    @parameterized.expand(
        [
            # fmt: off
            [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]],
            [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]],
            [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]],
            [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1079
    @require_torch_accelerator_with_fp16
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
    def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True)
        latents = self.get_latents(seed, fp16=True)
        encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
            [33, 4, [-0.4430, 0.1570, -0.1867, 0.2376, 0.3205, -0.3681, 0.0525, -0.0722]],
            [47, 0.55, [-0.1415, 0.0129, -0.3136, 0.2257, 0.3430, -0.0536, 0.2114, -0.0436]],
            [21, 0.89, [-0.7091, 0.6664, -0.3643, 0.9032, 0.4499, -0.6541, 0.0139, 0.1750]],
            [9, 1000, [0.8878, -0.5659, 0.5844, -0.7442, 1.1883, -0.3927, 1.1192, -0.4423]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1107
1108
    @require_torch_accelerator
    @skip_mps
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
    def test_compvis_sd_v1_5(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5")
        latents = self.get_latents(seed)
        encoder_hidden_states = self.get_encoder_hidden_states(seed)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)

    @parameterized.expand(
        [
            # fmt: off
            [83, 4, [-0.2695, -0.1669, 0.0073, -0.3181, -0.1187, -0.1676, -0.1395, -0.5972]],
            [17, 0.55, [-0.1290, -0.2588, 0.0551, -0.0916, 0.3286, 0.0238, -0.3669, 0.0322]],
            [8, 0.89, [-0.5283, 0.1198, 0.0870, -0.1141, 0.9189, -0.0150, 0.5474, 0.4319]],
            [3, 1000, [-0.5601, 0.2411, -0.5435, 0.1268, 1.1338, -0.2427, -0.0280, -1.0020]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1136
    @require_torch_accelerator_with_fp16
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
    def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True)
        latents = self.get_latents(seed, fp16=True)
        encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
            [33, 4, [-0.7639, 0.0106, -0.1615, -0.3487, -0.0423, -0.7972, 0.0085, -0.4858]],
            [47, 0.55, [-0.6564, 0.0795, -1.9026, -0.6258, 1.8235, 1.2056, 1.2169, 0.9073]],
            [21, 0.89, [0.0327, 0.4399, -0.6358, 0.3417, 0.4120, -0.5621, -0.0397, -1.0430]],
            [9, 1000, [0.1600, 0.7303, -1.0556, -0.3515, -0.7440, -1.2037, -1.8149, -1.8931]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1164
1165
    @require_torch_accelerator
    @skip_mps
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
    def test_compvis_sd_inpaint(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting")
        latents = self.get_latents(seed, shape=(4, 9, 64, 64))
        encoder_hidden_states = self.get_encoder_hidden_states(seed)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == (4, 4, 64, 64)

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

1181
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192

    @parameterized.expand(
        [
            # fmt: off
            [83, 4, [-0.1047, -1.7227, 0.1067, 0.0164, -0.5698, -0.4172, -0.1388, 1.1387]],
            [17, 0.55, [0.0975, -0.2856, -0.3508, -0.4600, 0.3376, 0.2930, -0.2747, -0.7026]],
            [8, 0.89, [-0.0952, 0.0183, -0.5825, -0.1981, 0.1131, 0.4668, -0.0395, -0.3486]],
            [3, 1000, [0.4790, 0.4949, -1.0732, -0.7158, 0.7959, -0.9478, 0.1105, -0.9741]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1193
    @require_torch_accelerator_with_fp16
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
    def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True)
        latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True)
        encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == (4, 4, 64, 64)

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
            [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]],
            [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]],
            [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]],
            [3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
1221
    @require_torch_accelerator_with_fp16
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
    def test_stabilityai_sd_v2_fp16(self, seed, timestep, expected_slice):
        model = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True)
        latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True)
        encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True)

        timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)

        with torch.no_grad():
            sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample

        assert sample.shape == latents.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)