test_stable_diffusion_inpaint.py 22.6 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
23
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
24
25
26

from diffusers import (
    AutoencoderKL,
27
    DPMSolverMultistepScheduler,
28
    LMSDiscreteScheduler,
29
30
31
32
    PNDMScheduler,
    StableDiffusionInpaintPipeline,
    UNet2DConditionModel,
)
33
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
34
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
35
from diffusers.utils.testing_utils import require_torch_gpu
36

37
from ...pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
38
39
from ...test_pipelines_common import PipelineTesterMixin

40
41
42
43

torch.backends.cuda.matmul.allow_tf32 = False


44
class StableDiffusionInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
45
    pipeline_class = StableDiffusionInpaintPipeline
46
47
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
48

49
    def get_dummy_components(self):
50
        torch.manual_seed(0)
51
        unet = UNet2DConditionModel(
52
53
54
55
56
57
58
59
60
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
61
        scheduler = PNDMScheduler(skip_prk_steps=True)
62
        torch.manual_seed(0)
63
        vae = AutoencoderKL(
64
65
66
67
68
69
70
71
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
72
        text_encoder_config = CLIPTextConfig(
73
74
75
76
77
78
79
80
81
82
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
83
        text_encoder = CLIPTextModel(text_encoder_config)
84
85
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

86
87
88
89
90
91
92
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
93
            "feature_extractor": None,
94
95
96
97
98
99
100
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
Patrick von Platen's avatar
Patrick von Platen committed
101
102
        init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
117

118
119
120
121
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
122
123
124
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

125
126
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
127
128
        image_slice = image[0, -3:, -3:, -1]

129
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
130
        expected_slice = np.array([0.4723, 0.5731, 0.3939, 0.5441, 0.5922, 0.4392, 0.5059, 0.4651, 0.4474])
131

132
133
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

134
135
    def test_stable_diffusion_inpaint_image_tensor(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
136
137
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
138
139
140
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

141
142
143
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        out_pil = output.images
144

145
146
147
148
149
        inputs = self.get_dummy_inputs(device)
        inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0)
        inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0)
        output = sd_pipe(**inputs)
        out_tensor = output.images
150

151
152
        assert out_pil.shape == (1, 64, 64, 3)
        assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
153

154
155
    def test_stable_diffusion_inpaint_with_num_images_per_prompt(self):
        device = "cpu"
156
157
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
158
159
160
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

161
162
        inputs = self.get_dummy_inputs(device)
        images = sd_pipe(**inputs, num_images_per_prompt=2).images
163
164
165
166

        # check if the output is a list of 2 images
        assert len(images) == 2

167
168

@slow
169
@require_torch_gpu
170
171
172
173
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

174
175
176
177
178
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

179
180
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
181
        init_image = load_image(
182
183
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
184
185
        )
        mask_image = load_image(
186
187
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
188
        )
189
190
191
192
193
194
195
196
197
198
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
199

200
201
202
203
    def test_stable_diffusion_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
204
205
206
207
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

208
209
210
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
211

212
        assert image.shape == (1, 512, 512, 3)
213
214
        expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])

215
216
217
218
        assert np.abs(expected_slice - image_slice).max() < 1e-4

    def test_stable_diffusion_inpaint_fp16(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
219
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
220
        )
221
222
223
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
224

225
226
227
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
228

229
        assert image.shape == (1, 512, 512, 3)
230
231
232
        expected_slice = np.array([0.1443, 0.1218, 0.1587, 0.1594, 0.1411, 0.1284, 0.1370, 0.1506, 0.2339])

        assert np.abs(expected_slice - image_slice).max() < 5e-2
233

234
    def test_stable_diffusion_inpaint_pndm(self):
235
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
236
            "runwayml/stable-diffusion-inpainting", safety_checker=None
237
        )
238
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
239
240
241
242
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

243
244
245
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
246

247
        assert image.shape == (1, 512, 512, 3)
248
249
        expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])

250
        assert np.abs(expected_slice - image_slice).max() < 1e-4
251

252
253
254
    def test_stable_diffusion_inpaint_k_lms(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
255
        )
256
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
257
258
259
260
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

261
262
263
264
265
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
266
267
        expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])

268
        assert np.abs(expected_slice - image_slice).max() < 1e-4
269

270
271
272
273
274
275
    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
276
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
277
        )
278
279
280
281
282
283
284
285
286
287
288
289
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9

290

291
292
293
294
295
296
297
@nightly
@require_torch_gpu
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()
298

299
300
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
301
        init_image = load_image(
302
303
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
304
305
        )
        mask_image = load_image(
306
307
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
308
        )
309
310
311
312
313
314
315
316
317
318
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
319

320
321
322
323
    def test_inpaint_ddim(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
324

325
326
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
327

328
329
330
331
332
333
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
334

335
336
337
338
339
340
341
342
    def test_inpaint_pndm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
343

344
345
346
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy"
347
        )
348
349
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
350

351
352
353
354
355
    def test_inpaint_lms(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
356

357
358
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
359

360
361
362
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy"
363
        )
364
365
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
366

367
368
369
370
371
    def test_inpaint_dpm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
372

373
374
375
        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]
376

377
378
379
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy"
380
        )
381
382
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
383

Patrick von Platen's avatar
Patrick von Platen committed
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
    def test_pil_inputs(self):
        im = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
        im = Image.fromarray(im)
        mask = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5
        mask = Image.fromarray((mask * 255).astype(np.uint8))

        t_mask, t_masked = prepare_mask_and_masked_image(im, mask)

        self.assertTrue(isinstance(t_mask, torch.Tensor))
        self.assertTrue(isinstance(t_masked, torch.Tensor))

        self.assertEqual(t_mask.ndim, 4)
        self.assertEqual(t_masked.ndim, 4)

        self.assertEqual(t_mask.shape, (1, 1, 32, 32))
        self.assertEqual(t_masked.shape, (1, 3, 32, 32))

        self.assertTrue(t_mask.dtype == torch.float32)
        self.assertTrue(t_masked.dtype == torch.float32)

        self.assertTrue(t_mask.min() >= 0.0)
        self.assertTrue(t_mask.max() <= 1.0)
        self.assertTrue(t_masked.min() >= -1.0)
        self.assertTrue(t_masked.min() <= 1.0)

        self.assertTrue(t_mask.sum() > 0.0)

    def test_np_inputs(self):
        im_np = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
        im_pil = Image.fromarray(im_np)
        mask_np = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5
        mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))

        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
        t_mask_pil, t_masked_pil = prepare_mask_and_masked_image(im_pil, mask_pil)

        self.assertTrue((t_mask_np == t_mask_pil).all())
        self.assertTrue((t_masked_np == t_masked_pil).all())

    def test_torch_3D_2D_inputs(self):
        im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_3D_3D_inputs(self):
        im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_4D_2D_inputs(self):
        im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_4D_3D_inputs(self):
        im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_4D_4D_inputs(self):
        im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (1, 1, 32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0][0]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_batch_4D_3D(self):
        im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (2, 32, 32), dtype=torch.uint8) > 127.5

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy() for mask in mask_tensor]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)]
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_batch_4D_4D(self):
        im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (2, 1, 32, 32), dtype=torch.uint8) > 127.5

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy()[0] for mask in mask_tensor]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)]
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_shape_mismatch(self):
        # test height and width
        with self.assertRaises(AssertionError):
            prepare_mask_and_masked_image(torch.randn(3, 32, 32), torch.randn(64, 64))
        # test batch dim
        with self.assertRaises(AssertionError):
            prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 64, 64))
        # test batch dim
        with self.assertRaises(AssertionError):
            prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 1, 64, 64))

    def test_type_mismatch(self):
        # test tensors-only
        with self.assertRaises(TypeError):
            prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.rand(3, 32, 32).numpy())
        # test tensors-only
        with self.assertRaises(TypeError):
            prepare_mask_and_masked_image(torch.rand(3, 32, 32).numpy(), torch.rand(3, 32, 32))

    def test_channels_first(self):
        # test channels first for 3D tensors
        with self.assertRaises(AssertionError):
            prepare_mask_and_masked_image(torch.rand(32, 32, 3), torch.rand(3, 32, 32))

    def test_tensor_range(self):
        # test im <= 1
        with self.assertRaises(ValueError):
            prepare_mask_and_masked_image(torch.ones(3, 32, 32) * 2, torch.rand(32, 32))
        # test im >= -1
        with self.assertRaises(ValueError):
            prepare_mask_and_masked_image(torch.ones(3, 32, 32) * (-2), torch.rand(32, 32))
        # test mask <= 1
        with self.assertRaises(ValueError):
            prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * 2)
        # test mask >= 0
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
551
            prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * -1)