convert_ldm_original_checkpoint_to_diffusers.py 14.6 KB
Newer Older
Lysandre Debut's avatar
Lysandre Debut committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Conversion script for the LDM checkpoints. """

import argparse
import json
import torch
Patrick von Platen's avatar
upload  
Patrick von Platen committed
20
from diffusers import VQModel, DDPMScheduler, UNetUnconditionalModel, LatentDiffusionUncondPipeline
Lysandre Debut's avatar
Lysandre Debut committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75


def shave_segments(path, n_shave_prefix_segments=1):
    """
    Removes segments. Positive values shave the first segments, negative shave the last segments.
    """
    if n_shave_prefix_segments >= 0:
        return '.'.join(path.split('.')[n_shave_prefix_segments:])
    else:
        return '.'.join(path.split('.')[:n_shave_prefix_segments])


def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item.replace('in_layers.0', 'norm1')
        new_item = new_item.replace('in_layers.2', 'conv1')

        new_item = new_item.replace('out_layers.0', 'norm2')
        new_item = new_item.replace('out_layers.3', 'conv2')

        new_item = new_item.replace('emb_layers.1', 'time_emb_proj')
        new_item = new_item.replace('skip_connection', 'conv_shortcut')

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({'old': old_item, 'new': new_item})

    return mapping


def renew_attention_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside attentions to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        new_item = new_item.replace('norm.weight', 'group_norm.weight')
        new_item = new_item.replace('norm.bias', 'group_norm.bias')

        new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
        new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({'old': old_item, 'new': new_item})

    return mapping


Patrick von Platen's avatar
Patrick von Platen committed
76
def assign_to_checkpoint(paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None):
Lysandre Debut's avatar
Lysandre Debut committed
77
78
79
80
81
82
83
84
85
86
87
88
    """
    This does the final conversion step: take locally converted weights and apply a global renaming
    to them. It splits attention layers, and takes into account additional replacements
    that may arise.

    Assigns the weights to the new checkpoint.
    """
    assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."

    # Splits the attention layers into three variables.
    if attention_paths_to_split is not None:
        for path, path_map in attention_paths_to_split.items():
Patrick von Platen's avatar
Patrick von Platen committed
89
90
            old_tensor = old_checkpoint[path]
            channels = old_tensor.shape[0] // 3
Lysandre Debut's avatar
Lysandre Debut committed
91

Patrick von Platen's avatar
Patrick von Platen committed
92
93
94
95
96
97
98
99
100
101
            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)

            num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3

            old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
            query, key, value = old_tensor.split(channels // num_heads, dim=1)

            checkpoint[path_map['query']] = query.reshape(target_shape)
            checkpoint[path_map['key']] = key.reshape(target_shape)
            checkpoint[path_map['value']] = value.reshape(target_shape)
Lysandre Debut's avatar
Lysandre Debut committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

    for path in paths:
        new_path = path['new']

        # These have already been assigned
        if attention_paths_to_split is not None and new_path in attention_paths_to_split:
            continue

        # Global renaming happens here
        new_path = new_path.replace('middle_block.0', 'mid.resnets.0')
        new_path = new_path.replace('middle_block.1', 'mid.attentions.0')
        new_path = new_path.replace('middle_block.2', 'mid.resnets.1')

        if additional_replacements is not None:
            for replacement in additional_replacements:
                new_path = new_path.replace(replacement['old'], replacement['new'])

Patrick von Platen's avatar
Patrick von Platen committed
119
120
121
122
123
        # proj_attn.weight has to be converted from conv 1D to linear
        if "proj_attn.weight" in new_path:
            checkpoint[new_path] = old_checkpoint[path['old']][:, :, 0]
        else:
            checkpoint[new_path] = old_checkpoint[path['old']]
Lysandre Debut's avatar
Lysandre Debut committed
124
125
126
127


def convert_ldm_checkpoint(checkpoint, config):
    """
Lysandre Debut's avatar
Lysandre Debut committed
128
    Takes a state dict and a config, and returns a converted checkpoint.
Lysandre Debut's avatar
Lysandre Debut committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    """
    new_checkpoint = {}

    new_checkpoint['time_embedding.linear_1.weight'] = checkpoint['time_embed.0.weight']
    new_checkpoint['time_embedding.linear_1.bias'] = checkpoint['time_embed.0.bias']
    new_checkpoint['time_embedding.linear_2.weight'] = checkpoint['time_embed.2.weight']
    new_checkpoint['time_embedding.linear_2.bias'] = checkpoint['time_embed.2.bias']

    new_checkpoint['conv_in.weight'] = checkpoint['input_blocks.0.0.weight']
    new_checkpoint['conv_in.bias'] = checkpoint['input_blocks.0.0.bias']

    new_checkpoint['conv_norm_out.weight'] = checkpoint['out.0.weight']
    new_checkpoint['conv_norm_out.bias'] = checkpoint['out.0.bias']
    new_checkpoint['conv_out.weight'] = checkpoint['out.2.weight']
    new_checkpoint['conv_out.bias'] = checkpoint['out.2.bias']

    # Retrieves the keys for the input blocks only
Lysandre Debut's avatar
Lysandre Debut committed
146
    num_input_blocks = len({'.'.join(layer.split('.')[:2]) for layer in checkpoint if 'input_blocks' in layer})
Lysandre Debut's avatar
Lysandre Debut committed
147
148
149
    input_blocks = {layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(num_input_blocks)}

    # Retrieves the keys for the middle blocks only
Lysandre Debut's avatar
Lysandre Debut committed
150
    num_middle_blocks = len({'.'.join(layer.split('.')[:2]) for layer in checkpoint if 'middle_block' in layer})
Lysandre Debut's avatar
Lysandre Debut committed
151
152
153
    middle_blocks = {layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(num_middle_blocks)}

    # Retrieves the keys for the output blocks only
Lysandre Debut's avatar
Lysandre Debut committed
154
    num_output_blocks = len({'.'.join(layer.split('.')[:2]) for layer in checkpoint if 'output_blocks' in layer})
Lysandre Debut's avatar
Lysandre Debut committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    output_blocks = {layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(num_output_blocks)}

    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config['num_res_blocks'] + 1)
        layer_in_block_id = (i - 1) % (config['num_res_blocks'] + 1)

        resnets = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key]
        attentions = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key]

        if f'input_blocks.{i}.0.op.weight' in checkpoint:
            new_checkpoint[f'downsample_blocks.{block_id}.downsamplers.0.conv.weight'] = checkpoint[f'input_blocks.{i}.0.op.weight']
            new_checkpoint[f'downsample_blocks.{block_id}.downsamplers.0.conv.bias'] = checkpoint[f'input_blocks.{i}.0.op.bias']

        paths = renew_resnet_paths(resnets)
        meta_path = {'old': f'input_blocks.{i}.0', 'new': f'downsample_blocks.{block_id}.resnets.{layer_in_block_id}'}
        resnet_op = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'}
Patrick von Platen's avatar
Patrick von Platen committed
171
        assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[meta_path, resnet_op], config=config)
Lysandre Debut's avatar
Lysandre Debut committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

        if len(attentions):
            paths = renew_attention_paths(attentions)
            meta_path = {'old': f'input_blocks.{i}.1', 'new': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}'}
            to_split = {
                f'input_blocks.{i}.1.qkv.bias': {
                    'key': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias',
                    'query': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias',
                    'value': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias',
                },
                f'input_blocks.{i}.1.qkv.weight': {
                    'key': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight',
                    'query': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight',
                    'value': f'downsample_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight',
                },
            }
            assign_to_checkpoint(
                paths,
                new_checkpoint,
                checkpoint,
                additional_replacements=[meta_path],
Patrick von Platen's avatar
Patrick von Platen committed
193
194
                attention_paths_to_split=to_split,
                config=config
Lysandre Debut's avatar
Lysandre Debut committed
195
196
197
198
199
200
201
            )

    resnet_0 = middle_blocks[0]
    attentions = middle_blocks[1]
    resnet_1 = middle_blocks[2]

    resnet_0_paths = renew_resnet_paths(resnet_0)
Patrick von Platen's avatar
Patrick von Platen committed
202
    assign_to_checkpoint(resnet_0_paths, new_checkpoint, checkpoint, config=config)
Lysandre Debut's avatar
Lysandre Debut committed
203
204

    resnet_1_paths = renew_resnet_paths(resnet_1)
Patrick von Platen's avatar
Patrick von Platen committed
205
    assign_to_checkpoint(resnet_1_paths, new_checkpoint, checkpoint, config=config)
Lysandre Debut's avatar
Lysandre Debut committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    attentions_paths = renew_attention_paths(attentions)
    to_split = {
        'middle_block.1.qkv.bias': {
            'key': 'mid.attentions.0.key.bias',
            'query': 'mid.attentions.0.query.bias',
            'value': 'mid.attentions.0.value.bias',
        },
        'middle_block.1.qkv.weight': {
            'key': 'mid.attentions.0.key.weight',
            'query': 'mid.attentions.0.query.weight',
            'value': 'mid.attentions.0.value.weight',
        },
    }
Patrick von Platen's avatar
Patrick von Platen committed
220
    assign_to_checkpoint(attentions_paths, new_checkpoint, checkpoint, attention_paths_to_split=to_split, config=config)
Lysandre Debut's avatar
Lysandre Debut committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

    for i in range(num_output_blocks):
        block_id = i // (config['num_res_blocks'] + 1)
        layer_in_block_id = i % (config['num_res_blocks'] + 1)
        output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
        output_block_list = {}

        for layer in output_block_layers:
            layer_id, layer_name = layer.split('.')[0], shave_segments(layer, 1)
            if layer_id in output_block_list:
                output_block_list[layer_id].append(layer_name)
            else:
                output_block_list[layer_id] = [layer_name]

        if len(output_block_list) > 1:
            resnets = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key]
            attentions = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key]

            resnet_0_paths = renew_resnet_paths(resnets)
            paths = renew_resnet_paths(resnets)

            meta_path = {'old': f'output_blocks.{i}.0', 'new': f'upsample_blocks.{block_id}.resnets.{layer_in_block_id}'}
Patrick von Platen's avatar
Patrick von Platen committed
243
            assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[meta_path], config=config)
Lysandre Debut's avatar
Lysandre Debut committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

            if ['conv.weight', 'conv.bias'] in output_block_list.values():
                index = list(output_block_list.values()).index(['conv.weight', 'conv.bias'])
                new_checkpoint[f'upsample_blocks.{block_id}.upsamplers.0.conv.weight'] = checkpoint[f'output_blocks.{i}.{index}.conv.weight']
                new_checkpoint[f'upsample_blocks.{block_id}.upsamplers.0.conv.bias'] = checkpoint[f'output_blocks.{i}.{index}.conv.bias']

                # Clear attentions as they have been attributed above.
                if len(attentions) == 2:
                    attentions = []

            if len(attentions):
                paths = renew_attention_paths(attentions)
                meta_path = {
                    'old': f'output_blocks.{i}.1',
                    'new': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}'
                }
                to_split = {
                    f'output_blocks.{i}.1.qkv.bias': {
                        'key': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias',
                        'query': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias',
                        'value': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias',
                    },
                    f'output_blocks.{i}.1.qkv.weight': {
                        'key': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight',
                        'query': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight',
                        'value': f'upsample_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight',
                    },
                }
                assign_to_checkpoint(
                    paths,
                    new_checkpoint,
                    checkpoint,
                    additional_replacements=[meta_path],
Patrick von Platen's avatar
Patrick von Platen committed
277
278
                    attention_paths_to_split=to_split if any('qkv' in key for key in attentions) else None,
                    config=config,
Lysandre Debut's avatar
Lysandre Debut committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
                )
        else:
            resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
            for path in resnet_0_paths:
                old_path = '.'.join(['output_blocks', str(i), path['old']])
                new_path = '.'.join(['upsample_blocks', str(block_id), 'resnets', str(layer_in_block_id), path['new']])

                new_checkpoint[new_path] = checkpoint[old_path]

    return new_checkpoint


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
    )

    parser.add_argument(
        "--config_file",
        default=None,
        type=str,
        required=True,
        help="The config json file corresponding to the architecture.",
    )

    parser.add_argument(
        "--dump_path", default=None, type=str, required=True, help="Path to the output model."
    )

    args = parser.parse_args()

    checkpoint = torch.load(args.checkpoint_path)

    with open(args.config_file) as f:
        config = json.loads(f.read())

    converted_checkpoint = convert_ldm_checkpoint(checkpoint, config)
Patrick von Platen's avatar
upload  
Patrick von Platen committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

    if "ldm" in config:
        del config["ldm"]

    model = UNetUnconditionalModel(**config)
    model.load_state_dict(converted_checkpoint)

    try:
        scheduler = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1]))
        vqvae = VQModel.from_pretrained("/".join(args.checkpoint_path.split("/")[:-1]))

        pipe = LatentDiffusionUncondPipeline(unet=model, scheduler=scheduler, vae=vqvae)
        pipe.save_pretrained(args.dump_path)
    except:
        model.save_pretrained(args.dump_path)