train_dreambooth_lora.py 59.1 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
17
import copy
Will Berman's avatar
Will Berman committed
18
import gc
19
import itertools
20
21
22
import logging
import math
import os
23
import shutil
24
25
26
import warnings
from pathlib import Path

27
import numpy as np
28
29
30
31
32
33
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
34
from accelerate.utils import ProjectConfiguration, set_seed
Patrick von Platen's avatar
Patrick von Platen committed
35
from huggingface_hub import create_repo, upload_folder
36
from huggingface_hub.utils import insecure_hashlib
Patrick von Platen's avatar
Patrick von Platen committed
37
38
39
40
41
42
43
44
45
from packaging import version
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
46
47
48
49
50
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
51
    StableDiffusionPipeline,
52
53
    UNet2DConditionModel,
)
54
from diffusers.loaders import LoraLoaderMixin
Will Berman's avatar
Will Berman committed
55
56
57
58
59
from diffusers.models.attention_processor import (
    AttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    SlicedAttnAddedKVProcessor,
)
60
from diffusers.models.lora import LoRALinearLayer
61
from diffusers.optimization import get_scheduler
62
from diffusers.training_utils import unet_lora_state_dict
Will Berman's avatar
Will Berman committed
63
from diffusers.utils import check_min_version, is_wandb_available
64
65
66
67
from diffusers.utils.import_utils import is_xformers_available


# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
68
check_min_version("0.24.0.dev0")
69
70
71
72

logger = get_logger(__name__)


73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# TODO: This function should be removed once training scripts are rewritten in PEFT
def text_encoder_lora_state_dict(text_encoder):
    state_dict = {}

    def text_encoder_attn_modules(text_encoder):
        from transformers import CLIPTextModel, CLIPTextModelWithProjection

        attn_modules = []

        if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
            for i, layer in enumerate(text_encoder.text_model.encoder.layers):
                name = f"text_model.encoder.layers.{i}.self_attn"
                mod = layer.self_attn
                attn_modules.append((name, mod))

        return attn_modules

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


106
107
108
109
110
111
112
113
114
def save_model_card(
    repo_id: str,
    images=None,
    base_model=str,
    train_text_encoder=False,
    prompt=str,
    repo_folder=None,
    pipeline: DiffusionPipeline = None,
):
Patrick von Platen's avatar
Patrick von Platen committed
115
116
117
118
119
120
121
122
123
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
124
instance_prompt: {prompt}
Patrick von Platen's avatar
Patrick von Platen committed
125
tags:
126
127
- {'stable-diffusion' if isinstance(pipeline, StableDiffusionPipeline) else 'if'}
- {'stable-diffusion-diffusers' if isinstance(pipeline, StableDiffusionPipeline) else 'if-diffusers'}
Patrick von Platen's avatar
Patrick von Platen committed
128
129
- text-to-image
- diffusers
130
- lora
Patrick von Platen's avatar
Patrick von Platen committed
131
132
133
134
inference: true
---
    """
    model_card = f"""
135
# LoRA DreamBooth - {repo_id}
Patrick von Platen's avatar
Patrick von Platen committed
136

hysts's avatar
hysts committed
137
These are LoRA adaption weights for {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. \n
Patrick von Platen's avatar
Patrick von Platen committed
138
{img_str}
139
140

LoRA for the text encoder was enabled: {train_text_encoder}.
Patrick von Platen's avatar
Patrick von Platen committed
141
142
143
144
145
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=revision,
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
Will Berman's avatar
Will Berman committed
162
163
164
165
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    else:
        raise ValueError(f"{model_class} is not supported.")


def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        required=True,
        help="The prompt with identifier specifying the instance",
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=50,
        help=(
            "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="lora-dreambooth-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
patil-suraj's avatar
patil-suraj committed
273
274
275
276
277
278
279
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
280
    )
281
282
283
284
285
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
            " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
309
    parser.add_argument(
310
        "--checkpoints_total_limit",
311
312
        type=int,
        default=None,
313
        help=("Max number of checkpoints to store."),
314
    )
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
366
367
368
369
370
371
372
373
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
Will Berman's avatar
Will Berman committed
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    parser.add_argument(
        "--pre_compute_text_embeddings",
        action="store_true",
        help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.",
    )
    parser.add_argument(
        "--tokenizer_max_length",
        type=int,
        default=None,
        required=False,
        help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
    )
    parser.add_argument(
        "--text_encoder_use_attention_mask",
        action="store_true",
        required=False,
        help="Whether to use attention mask for the text encoder",
    )
459
460
461
462
463
464
465
466
467
468
469
470
471
    parser.add_argument(
        "--validation_images",
        required=False,
        default=None,
        nargs="+",
        help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.",
    )
    parser.add_argument(
        "--class_labels_conditioning",
        required=False,
        default=None,
        help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.",
    )
472
473
474
475
476
477
    parser.add_argument(
        "--rank",
        type=int,
        default=4,
        help=("The dimension of the LoRA update matrices."),
    )
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
    else:
        # logger is not available yet
        if args.class_data_dir is not None:
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
        if args.class_prompt is not None:
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")

Will Berman's avatar
Will Berman committed
500
501
502
    if args.train_text_encoder and args.pre_compute_text_embeddings:
        raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`")

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    return args


class DreamBoothDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
519
        class_num=None,
520
521
        size=512,
        center_crop=False,
Will Berman's avatar
Will Berman committed
522
        encoder_hidden_states=None,
523
        class_prompt_encoder_hidden_states=None,
Will Berman's avatar
Will Berman committed
524
        tokenizer_max_length=None,
525
526
527
528
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer
Will Berman's avatar
Will Berman committed
529
        self.encoder_hidden_states = encoder_hidden_states
530
        self.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_states
Will Berman's avatar
Will Berman committed
531
        self.tokenizer_max_length = tokenizer_max_length
532
533
534
535
536
537
538
539
540
541
542
543
544
545

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
            raise ValueError("Instance images root doesn't exists.")

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
            self.class_images_path = list(self.class_data_root.iterdir())
546
547
548
549
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
570
571
        instance_image = exif_transpose(instance_image)

572
573
574
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
Will Berman's avatar
Will Berman committed
575
576
577
578
579
580
581
582
583

        if self.encoder_hidden_states is not None:
            example["instance_prompt_ids"] = self.encoder_hidden_states
        else:
            text_inputs = tokenize_prompt(
                self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length
            )
            example["instance_prompt_ids"] = text_inputs.input_ids
            example["instance_attention_mask"] = text_inputs.attention_mask
584
585
586

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
587
588
            class_image = exif_transpose(class_image)

589
590
591
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
Will Berman's avatar
Will Berman committed
592

593
594
            if self.class_prompt_encoder_hidden_states is not None:
                example["class_prompt_ids"] = self.class_prompt_encoder_hidden_states
Will Berman's avatar
Will Berman committed
595
596
597
598
599
600
            else:
                class_text_inputs = tokenize_prompt(
                    self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
                )
                example["class_prompt_ids"] = class_text_inputs.input_ids
                example["class_attention_mask"] = class_text_inputs.attention_mask
601
602
603
604
605

        return example


def collate_fn(examples, with_prior_preservation=False):
Will Berman's avatar
Will Berman committed
606
607
    has_attention_mask = "instance_attention_mask" in examples[0]

608
609
610
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

Will Berman's avatar
Will Berman committed
611
612
613
    if has_attention_mask:
        attention_mask = [example["instance_attention_mask"] for example in examples]

614
615
616
617
618
    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]
Will Berman's avatar
Will Berman committed
619
620
        if has_attention_mask:
            attention_mask += [example["class_attention_mask"] for example in examples]
621
622
623
624
625
626
627
628
629
630

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
Will Berman's avatar
Will Berman committed
631
632
633
634

    if has_attention_mask:
        batch["attention_mask"] = attention_mask

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
    return batch


class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


Will Berman's avatar
Will Berman committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
    if tokenizer_max_length is not None:
        max_length = tokenizer_max_length
    else:
        max_length = tokenizer.model_max_length

    text_inputs = tokenizer(
        prompt,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )

    return text_inputs


def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
    text_input_ids = input_ids.to(text_encoder.device)

    if text_encoder_use_attention_mask:
        attention_mask = attention_mask.to(text_encoder.device)
    else:
        attention_mask = None

    prompt_embeds = text_encoder(
        text_input_ids,
        attention_mask=attention_mask,
    )
    prompt_embeds = prompt_embeds[0]

    return prompt_embeds


689
690
691
def main(args):
    logging_dir = Path(args.output_dir, args.logging_dir)

692
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
693

694
695
696
697
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
698
        project_config=accelerator_project_config,
699
700
701
702
703
704
705
706
707
    )

    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
        import wandb

    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
708
709
710
711
712
713
714
    # TODO (sayakpaul): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Generate class images if prior preservation is enabled.
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
            pipeline = DiffusionPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
                images = pipeline(example["prompt"]).images

                for i, image in enumerate(images):
771
                    hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest()
772
773
774
775
776
777
778
779
780
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
781
        if args.output_dir is not None:
782
783
            os.makedirs(args.output_dir, exist_ok=True)

784
785
786
787
788
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
    # Load the tokenizer
    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
    elif args.pretrained_model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
            use_fast=False,
        )

    # import correct text encoder class
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)

    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    text_encoder = text_encoder_cls.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
    )
808
    try:
Will Berman's avatar
Will Berman committed
809
810
811
        vae = AutoencoderKL.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision
        )
812
813
814
    except OSError:
        # IF does not have a VAE so let's just set it to None
        # We don't have to error out here
Will Berman's avatar
Will Berman committed
815
816
        vae = None

817
818
819
820
821
    unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
    )

    # We only train the additional adapter LoRA layers
Will Berman's avatar
Will Berman committed
822
823
    if vae is not None:
        vae.requires_grad_(False)
824
825
826
    text_encoder.requires_grad_(False)
    unet.requires_grad_(False)

827
    # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
828
    # as these weights are only used for inference, keeping weights in full precision is not required.
829
830
831
832
833
834
835
836
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move unet, vae and text_encoder to device and cast to weight_dtype
    unet.to(accelerator.device, dtype=weight_dtype)
Will Berman's avatar
Will Berman committed
837
838
    if vae is not None:
        vae.to(accelerator.device, dtype=weight_dtype)
839
840
841
842
    text_encoder.to(accelerator.device, dtype=weight_dtype)

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
843
844
845
846
847
848
849
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
850
851
852
853
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

854
855
856
857
858
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()

859
860
861
862
863
864
865
866
867
868
    # now we will add new LoRA weights to the attention layers
    # It's important to realize here how many attention weights will be added and of which sizes
    # The sizes of the attention layers consist only of two different variables:
    # 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`.
    # 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`.

    # Let's first see how many attention processors we will have to set.
    # For Stable Diffusion, it should be equal to:
    # - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12
    # - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2
869
    # - up blocks (2x attention layers) * (3x transformer layers) * (3x up blocks) = 18
870
871
872
    # => 32 layers

    # Set correct lora layers
Will Berman's avatar
Will Berman committed
873
    unet_lora_parameters = []
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
    for attn_processor_name, attn_processor in unet.attn_processors.items():
        # Parse the attention module.
        attn_module = unet
        for n in attn_processor_name.split(".")[:-1]:
            attn_module = getattr(attn_module, n)

        # Set the `lora_layer` attribute of the attention-related matrices.
        attn_module.to_q.set_lora_layer(
            LoRALinearLayer(
                in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=args.rank
            )
        )
        attn_module.to_k.set_lora_layer(
            LoRALinearLayer(
                in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=args.rank
            )
        )
        attn_module.to_v.set_lora_layer(
            LoRALinearLayer(
                in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=args.rank
894
            )
895
        )
896
897
898
899
900
901
902
903
904
905
906
907
908
        attn_module.to_out[0].set_lora_layer(
            LoRALinearLayer(
                in_features=attn_module.to_out[0].in_features,
                out_features=attn_module.to_out[0].out_features,
                rank=args.rank,
            )
        )

        # Accumulate the LoRA params to optimize.
        unet_lora_parameters.extend(attn_module.to_q.lora_layer.parameters())
        unet_lora_parameters.extend(attn_module.to_k.lora_layer.parameters())
        unet_lora_parameters.extend(attn_module.to_v.lora_layer.parameters())
        unet_lora_parameters.extend(attn_module.to_out[0].lora_layer.parameters())
909

910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
        if isinstance(attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)):
            attn_module.add_k_proj.set_lora_layer(
                LoRALinearLayer(
                    in_features=attn_module.add_k_proj.in_features,
                    out_features=attn_module.add_k_proj.out_features,
                    rank=args.rank,
                )
            )
            attn_module.add_v_proj.set_lora_layer(
                LoRALinearLayer(
                    in_features=attn_module.add_v_proj.in_features,
                    out_features=attn_module.add_v_proj.out_features,
                    rank=args.rank,
                )
            )
            unet_lora_parameters.extend(attn_module.add_k_proj.lora_layer.parameters())
            unet_lora_parameters.extend(attn_module.add_v_proj.lora_layer.parameters())
927
928

    # The text encoder comes from 🤗 transformers, so we cannot directly modify it.
Will Berman's avatar
Will Berman committed
929
    # So, instead, we monkey-patch the forward calls of its attention-blocks.
930
    if args.train_text_encoder:
Will Berman's avatar
Will Berman committed
931
        # ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
932
        text_lora_parameters = LoraLoaderMixin._modify_text_encoder(text_encoder, dtype=torch.float32, rank=args.rank)
933

934
935
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
936
937
938
939
940
941
942
943
        if accelerator.is_main_process:
            # there are only two options here. Either are just the unet attn processor layers
            # or there are the unet and text encoder atten layers
            unet_lora_layers_to_save = None
            text_encoder_lora_layers_to_save = None

            for model in models:
                if isinstance(model, type(accelerator.unwrap_model(unet))):
944
                    unet_lora_layers_to_save = unet_lora_state_dict(model)
945
946
947
948
949
950
951
952
953
954
955
956
957
                elif isinstance(model, type(accelerator.unwrap_model(text_encoder))):
                    text_encoder_lora_layers_to_save = text_encoder_lora_state_dict(model)
                else:
                    raise ValueError(f"unexpected save model: {model.__class__}")

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

            LoraLoaderMixin.save_lora_weights(
                output_dir,
                unet_lora_layers=unet_lora_layers_to_save,
                text_encoder_lora_layers=text_encoder_lora_layers_to_save,
            )
958
959

    def load_model_hook(models, input_dir):
Will Berman's avatar
Will Berman committed
960
961
        unet_ = None
        text_encoder_ = None
962

Will Berman's avatar
Will Berman committed
963
964
        while len(models) > 0:
            model = models.pop()
965

Will Berman's avatar
Will Berman committed
966
967
968
969
970
971
972
            if isinstance(model, type(accelerator.unwrap_model(unet))):
                unet_ = model
            elif isinstance(model, type(accelerator.unwrap_model(text_encoder))):
                text_encoder_ = model
            else:
                raise ValueError(f"unexpected save model: {model.__class__}")

973
974
        lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
        LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_)
Will Berman's avatar
Will Berman committed
975
        LoraLoaderMixin.load_lora_into_text_encoder(
976
            lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_
Will Berman's avatar
Will Berman committed
977
        )
978
979
980
981

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

    # Optimizer creation
1006
    params_to_optimize = (
Will Berman's avatar
Will Berman committed
1007
        itertools.chain(unet_lora_parameters, text_lora_parameters)
1008
        if args.train_text_encoder
Will Berman's avatar
Will Berman committed
1009
        else unet_lora_parameters
1010
    )
1011
    optimizer = optimizer_class(
1012
        params_to_optimize,
1013
1014
1015
1016
1017
1018
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

Will Berman's avatar
Will Berman committed
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    if args.pre_compute_text_embeddings:

        def compute_text_embeddings(prompt):
            with torch.no_grad():
                text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length)
                prompt_embeds = encode_prompt(
                    text_encoder,
                    text_inputs.input_ids,
                    text_inputs.attention_mask,
                    text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                )

            return prompt_embeds

        pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        validation_prompt_negative_prompt_embeds = compute_text_embeddings("")

        if args.validation_prompt is not None:
            validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt)
        else:
            validation_prompt_encoder_hidden_states = None

1041
        if args.class_prompt is not None:
1042
            pre_computed_class_prompt_encoder_hidden_states = compute_text_embeddings(args.class_prompt)
Will Berman's avatar
Will Berman committed
1043
        else:
1044
            pre_computed_class_prompt_encoder_hidden_states = None
Will Berman's avatar
Will Berman committed
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

        text_encoder = None
        tokenizer = None

        gc.collect()
        torch.cuda.empty_cache()
    else:
        pre_computed_encoder_hidden_states = None
        validation_prompt_encoder_hidden_states = None
        validation_prompt_negative_prompt_embeds = None
1055
        pre_computed_class_prompt_encoder_hidden_states = None
Will Berman's avatar
Will Berman committed
1056

1057
1058
1059
1060
1061
1062
    # Dataset and DataLoaders creation:
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
1063
        class_num=args.num_class_images,
1064
1065
1066
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
Will Berman's avatar
Will Berman committed
1067
        encoder_hidden_states=pre_computed_encoder_hidden_states,
1068
        class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states,
Will Berman's avatar
Will Berman committed
1069
        tokenizer_max_length=args.tokenizer_max_length,
1070
1071
1072
1073
1074
1075
1076
    )

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
1077
        num_workers=args.dataloader_num_workers,
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
1090
1091
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
1092
1093
1094
1095
1096
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
    )

    # Prepare everything with our `accelerator`.
1097
    if args.train_text_encoder:
Will Berman's avatar
Will Berman committed
1098
1099
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
1100
1101
        )
    else:
Will Berman's avatar
Will Berman committed
1102
1103
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
1104
        )
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
1116
        tracker_config = vars(copy.deepcopy(args))
1117
1118
        tracker_config.pop("validation_images")
        accelerator.init_trackers("dreambooth-lora", config=tracker_config)
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
1143
1144
1145
1146
1147
1148
1149
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
1150
            initial_global_step = 0
1151
1152
1153
1154
1155
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

1156
            initial_global_step = global_step
1157
            first_epoch = global_step // num_update_steps_per_epoch
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
1168
1169
1170

    for epoch in range(first_epoch, args.num_train_epochs):
        unet.train()
1171
1172
        if args.train_text_encoder:
            text_encoder.train()
1173
1174
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
Will Berman's avatar
Will Berman committed
1175
1176
1177
1178
1179
1180
1181
1182
                pixel_values = batch["pixel_values"].to(dtype=weight_dtype)

                if vae is not None:
                    # Convert images to latent space
                    model_input = vae.encode(pixel_values).latent_dist.sample()
                    model_input = model_input * vae.config.scaling_factor
                else:
                    model_input = pixel_values
1183
1184

                # Sample noise that we'll add to the latents
Will Berman's avatar
Will Berman committed
1185
                noise = torch.randn_like(model_input)
1186
                bsz, channels, height, width = model_input.shape
1187
                # Sample a random timestep for each image
Will Berman's avatar
Will Berman committed
1188
1189
1190
                timesteps = torch.randint(
                    0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                )
1191
1192
                timesteps = timesteps.long()

Will Berman's avatar
Will Berman committed
1193
                # Add noise to the model input according to the noise magnitude at each timestep
1194
                # (this is the forward diffusion process)
Will Berman's avatar
Will Berman committed
1195
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
1196
1197

                # Get the text embedding for conditioning
Will Berman's avatar
Will Berman committed
1198
1199
1200
1201
1202
1203
1204
1205
1206
                if args.pre_compute_text_embeddings:
                    encoder_hidden_states = batch["input_ids"]
                else:
                    encoder_hidden_states = encode_prompt(
                        text_encoder,
                        batch["input_ids"],
                        batch["attention_mask"],
                        text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                    )
1207

1208
                if accelerator.unwrap_model(unet).config.in_channels == channels * 2:
1209
                    noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1)
1210
1211
1212
1213
1214
1215

                if args.class_labels_conditioning == "timesteps":
                    class_labels = timesteps
                else:
                    class_labels = None

1216
                # Predict the noise residual
1217
1218
1219
                model_pred = unet(
                    noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels
                ).sample
Will Berman's avatar
Will Berman committed
1220
1221
1222
1223
1224
1225

                # if model predicts variance, throw away the prediction. we will only train on the
                # simplified training objective. This means that all schedulers using the fine tuned
                # model must be configured to use one of the fixed variance variance types.
                if model_pred.shape[1] == 6:
                    model_pred, _ = torch.chunk(model_pred, 2, dim=1)
1226
1227
1228
1229
1230

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
Will Berman's avatar
Will Berman committed
1231
                    target = noise_scheduler.get_velocity(model_input, noise, timesteps)
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                if args.with_prior_preservation:
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)

                    # Compute instance loss
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                    # Compute prior loss
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")

                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss
                else:
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                accelerator.backward(loss)
                if accelerator.sync_gradients:
1253
                    params_to_clip = (
Will Berman's avatar
Will Berman committed
1254
                        itertools.chain(unet_lora_parameters, text_lora_parameters)
1255
                        if args.train_text_encoder
Will Berman's avatar
Will Berman committed
1256
                        else unet_lora_parameters
1257
                    )
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

1268
1269
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

1290
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
1291
                        accelerator.save_state(save_path)
1292
1293
1294
1295
1296
1297
1298
1299
1300
                        logger.info(f"Saved state to {save_path}")

            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
        if accelerator.is_main_process:
            if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
                logger.info(
                    f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
                    f" {args.validation_prompt}."
                )
                # create pipeline
                pipeline = DiffusionPipeline.from_pretrained(
                    args.pretrained_model_name_or_path,
                    unet=accelerator.unwrap_model(unet),
Will Berman's avatar
Will Berman committed
1311
                    text_encoder=None if args.pre_compute_text_embeddings else accelerator.unwrap_model(text_encoder),
1312
1313
1314
                    revision=args.revision,
                    torch_dtype=weight_dtype,
                )
Will Berman's avatar
Will Berman committed
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330

                # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
                scheduler_args = {}

                if "variance_type" in pipeline.scheduler.config:
                    variance_type = pipeline.scheduler.config.variance_type

                    if variance_type in ["learned", "learned_range"]:
                        variance_type = "fixed_small"

                    scheduler_args["variance_type"] = variance_type

                pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
                    pipeline.scheduler.config, **scheduler_args
                )

1331
1332
1333
1334
                pipeline = pipeline.to(accelerator.device)
                pipeline.set_progress_bar_config(disable=True)

                # run inference
Will Berman's avatar
Will Berman committed
1335
1336
1337
1338
1339
1340
1341
1342
                generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
                if args.pre_compute_text_embeddings:
                    pipeline_args = {
                        "prompt_embeds": validation_prompt_encoder_hidden_states,
                        "negative_prompt_embeds": validation_prompt_negative_prompt_embeds,
                    }
                else:
                    pipeline_args = {"prompt": args.validation_prompt}
1343
1344

                if args.validation_images is None:
Will Berman's avatar
Will Berman committed
1345
1346
1347
1348
1349
                    images = []
                    for _ in range(args.num_validation_images):
                        with torch.cuda.amp.autocast():
                            image = pipeline(**pipeline_args, generator=generator).images[0]
                            images.append(image)
1350
1351
1352
1353
                else:
                    images = []
                    for image in args.validation_images:
                        image = Image.open(image)
Will Berman's avatar
Will Berman committed
1354
1355
                        with torch.cuda.amp.autocast():
                            image = pipeline(**pipeline_args, image=image, generator=generator).images[0]
1356
                        images.append(image)
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373

                for tracker in accelerator.trackers:
                    if tracker.name == "tensorboard":
                        np_images = np.stack([np.asarray(img) for img in images])
                        tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
                    if tracker.name == "wandb":
                        tracker.log(
                            {
                                "validation": [
                                    wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
                                    for i, image in enumerate(images)
                                ]
                            }
                        )

                del pipeline
                torch.cuda.empty_cache()
1374
1375
1376
1377

    # Save the lora layers
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
Will Berman's avatar
Will Berman committed
1378
        unet = accelerator.unwrap_model(unet)
1379
        unet = unet.to(torch.float32)
1380
        unet_lora_layers = unet_lora_state_dict(unet)
1381

Will Berman's avatar
Will Berman committed
1382
1383
        if text_encoder is not None and args.train_text_encoder:
            text_encoder = accelerator.unwrap_model(text_encoder)
Will Berman's avatar
Will Berman committed
1384
            text_encoder = text_encoder.to(torch.float32)
Will Berman's avatar
Will Berman committed
1385
1386
1387
            text_encoder_lora_layers = text_encoder_lora_state_dict(text_encoder)
        else:
            text_encoder_lora_layers = None
1388

1389
1390
1391
1392
1393
        LoraLoaderMixin.save_lora_weights(
            save_directory=args.output_dir,
            unet_lora_layers=unet_lora_layers,
            text_encoder_lora_layers=text_encoder_lora_layers,
        )
1394

Patrick von Platen's avatar
Patrick von Platen committed
1395
1396
1397
1398
1399
        # Final inference
        # Load previous pipeline
        pipeline = DiffusionPipeline.from_pretrained(
            args.pretrained_model_name_or_path, revision=args.revision, torch_dtype=weight_dtype
        )
Will Berman's avatar
Will Berman committed
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413

        # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
        scheduler_args = {}

        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type

            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"

            scheduler_args["variance_type"] = variance_type

        pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)

Patrick von Platen's avatar
Patrick von Platen committed
1414
1415
1416
        pipeline = pipeline.to(accelerator.device)

        # load attention processors
1417
        pipeline.load_lora_weights(args.output_dir, weight_name="pytorch_lora_weights.safetensors")
Patrick von Platen's avatar
Patrick von Platen committed
1418
1419

        # run inference
1420
        images = []
1421
1422
        if args.validation_prompt and args.num_validation_images > 0:
            generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
1423
1424
1425
1426
            images = [
                pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
                for _ in range(args.num_validation_images)
            ]
Patrick von Platen's avatar
Patrick von Platen committed
1427

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
            for tracker in accelerator.trackers:
                if tracker.name == "tensorboard":
                    np_images = np.stack([np.asarray(img) for img in images])
                    tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC")
                if tracker.name == "wandb":
                    tracker.log(
                        {
                            "test": [
                                wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
                                for i, image in enumerate(images)
                            ]
                        }
                    )
1441

Patrick von Platen's avatar
Patrick von Platen committed
1442
1443
        if args.push_to_hub:
            save_model_card(
1444
                repo_id,
Patrick von Platen's avatar
Patrick von Platen committed
1445
1446
                images=images,
                base_model=args.pretrained_model_name_or_path,
1447
                train_text_encoder=args.train_text_encoder,
Patrick von Platen's avatar
Patrick von Platen committed
1448
1449
                prompt=args.instance_prompt,
                repo_folder=args.output_dir,
1450
                pipeline=pipeline,
1451
            )
1452
1453
1454
1455
1456
1457
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1458
1459
1460
1461
1462
1463
1464

    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)