test_stable_diffusion.py 18.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
    logging,
)
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import CaptureLogger, require_torch_gpu
35
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
36
37
38
39
40
41
42
43

from ...test_pipelines_common import PipelineTesterMixin


torch.backends.cuda.matmul.allow_tf32 = False


class StableDiffusion2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
44
    pipeline_class = StableDiffusionPipeline
45

46
    def get_dummy_components(self):
47
        torch.manual_seed(0)
48
        unet = UNet2DConditionModel(
49
50
51
52
53
54
55
56
57
58
59
60
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
            # SD2-specific config below
            attention_head_dim=(2, 4, 8, 8),
            use_linear_projection=True,
        )
61
62
63
64
65
66
67
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
68
        torch.manual_seed(0)
69
        vae = AutoencoderKL(
70
71
72
73
74
75
76
77
78
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
79
        text_encoder_config = CLIPTextConfig(
80
81
82
83
84
85
86
87
88
89
90
91
92
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=512,
        )
93
        text_encoder = CLIPTextModel(text_encoder_config)
94
95
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
120
121
122

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
123
124
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
125
126
127
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

128
129
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
130
131
132
133
134
135
136
137
138
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5649, 0.6022, 0.4804, 0.5270, 0.5585, 0.4643, 0.5159, 0.4963, 0.4793])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
139
140
141
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
142
143
144
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

145
146
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
147
148
149
150
151
152
153
154
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.5099, 0.5677, 0.4671, 0.5128, 0.5697, 0.4676, 0.5277, 0.4964, 0.4946])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
155
156
157
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
158
159
160
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

161
162
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
163
164
165
166
167
168
169
170
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4717, 0.5376, 0.4568, 0.5225, 0.5734, 0.4797, 0.5467, 0.5074, 0.5043])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
171
172
173
        components = self.get_dummy_components()
        components["scheduler"] = EulerAncestralDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
174
175
176
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

177
178
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
179
180
181
182
183
184
185
186
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4715, 0.5376, 0.4569, 0.5224, 0.5734, 0.4797, 0.5465, 0.5074, 0.5046])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
187
188
189
        components = self.get_dummy_components()
        components["scheduler"] = EulerDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
190
191
192
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

193
194
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
195
196
197
198
199
200
201
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4717, 0.5376, 0.4568, 0.5225, 0.5734, 0.4797, 0.5467, 0.5074, 0.5043])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_long_prompt(self):
202
203
204
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
            text_embeddings_3 = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
            text_embeddings = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
            text_embeddings_2 = sd_pipe._encode_prompt(
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )

        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77

        assert cap_logger.out == cap_logger_2.out
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25
        assert cap_logger_3.out == ""


@slow
@require_torch_gpu
class StableDiffusion2PipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_stable_diffusion(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np")

        image = output.images
        image_slice = image[0, 253:256, 253:256, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.0788, 0.0823, 0.1091, 0.1165, 0.1263, 0.1459, 0.1317, 0.1507, 0.1551])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_ddim(self):
        scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-base", subfolder="scheduler")
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base", scheduler=scheduler)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "A painting of a squirrel eating a burger"
        generator = torch.Generator(device=torch_device).manual_seed(0)

        output = sd_pipe([prompt], generator=generator, num_inference_steps=5, output_type="numpy")
        image = output.images

        image_slice = image[0, 253:256, 253:256, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.0642, 0.0382, 0.0408, 0.0395, 0.0227, 0.0942, 0.0749, 0.0669, 0.0248])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_lms(self):
        scheduler = LMSDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-2-base", subfolder="scheduler")
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base", scheduler=scheduler)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        prompt = "a photograph of an astronaut riding a horse"
        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = sd_pipe(
            [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=5, output_type="numpy"
        ).images

        image_slice = image[0, 253:256, 253:256, -1]
        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.0548, 0.0626, 0.0612, 0.0611, 0.0706, 0.0586, 0.0843, 0.0333, 0.1197])
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

300
    def test_stable_diffusion_attention_slicing(self):
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        torch.cuda.reset_peak_memory_stats()
        model_id = "stabilityai/stable-diffusion-2-base"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "a photograph of an astronaut riding a horse"

        # make attention efficient
        pipe.enable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output_chunked = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image_chunked = output_chunked.images

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        # make sure that less than 3.75 GB is allocated
        assert mem_bytes < 3.75 * 10**9

        # disable chunking
        pipe.disable_attention_slicing()
        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            output = pipe(
                [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
            )
            image = output.images

        # make sure that more than 3.75 GB is allocated
        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes > 3.75 * 10**9
        assert np.abs(image_chunked.flatten() - image.flatten()).max() < 1e-3

337
    def test_stable_diffusion_same_quality(self):
338
339
340
341
        torch.cuda.reset_peak_memory_stats()
        model_id = "stabilityai/stable-diffusion-2-base"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, revision="fp16", torch_dtype=torch.float16)
        pipe = pipe.to(torch_device)
342
        pipe.enable_attention_slicing()
343
344
345
346
347
348
349
350
351
352
        pipe.set_progress_bar_config(disable=None)

        prompt = "a photograph of an astronaut riding a horse"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output_chunked = pipe(
            [prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy"
        )
        image_chunked = output_chunked.images

353
354
        pipe = StableDiffusionPipeline.from_pretrained(model_id)
        pipe = pipe.to(torch_device)
355
        generator = torch.Generator(device=torch_device).manual_seed(0)
356
357
        output = pipe([prompt], generator=generator, guidance_scale=7.5, num_inference_steps=10, output_type="numpy")
        image = output.images
358
359
360
361
362

        # Make sure results are close enough
        diff = np.abs(image_chunked.flatten() - image.flatten())
        # They ARE different since ops are not run always at the same precision
        # however, they should be extremely close.
363
        assert diff.mean() < 5e-2
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

    def test_stable_diffusion_text2img_pipeline_default(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-text2img/astronaut_riding_a_horse.npy"
        )

        model_id = "stabilityai/stable-diffusion-2-base"
        pipe = StableDiffusionPipeline.from_pretrained(model_id, safety_checker=None)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "astronaut riding a horse"

        generator = torch.Generator(device=torch_device).manual_seed(0)
379
        output = pipe(prompt=prompt, guidance_scale=7.5, generator=generator, output_type="np")
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
        image = output.images[0]

        assert image.shape == (512, 512, 3)
        assert np.abs(expected_image - image).max() < 5e-3

    def test_stable_diffusion_text2img_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array([1.8606, 1.3169, -0.0691, 1.2374, -2.309, 1.077, -0.1084, -0.6774, -2.9594])
397
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-3
398
399
400
401
            elif step == 20:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
Patrick von Platen's avatar
Patrick von Platen committed
402
                expected_slice = np.array([1.0757, 1.1860, 1.1410, 0.4645, -0.2476, 0.6100, -0.7755, -0.8841, -0.9497])
Patrick von Platen's avatar
Patrick von Platen committed
403
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

        test_callback_fn.has_been_called = False

        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-base", revision="fp16", torch_dtype=torch.float16
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "Andromeda galaxy in a bottle"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            pipe(
                prompt=prompt,
                num_inference_steps=20,
                guidance_scale=7.5,
                generator=generator,
                callback=test_callback_fn,
                callback_steps=1,
            )
        assert test_callback_fn.has_been_called
427
        assert number_of_steps == 20
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipeline_id = "stabilityai/stable-diffusion-2-base"
        prompt = "Andromeda galaxy in a bottle"

        pipeline = StableDiffusionPipeline.from_pretrained(pipeline_id, revision="fp16", torch_dtype=torch.float16)
        pipeline = pipeline.to(torch_device)
        pipeline.enable_attention_slicing(1)
        pipeline.enable_sequential_cpu_offload()

        generator = torch.Generator(device=torch_device).manual_seed(0)
        _ = pipeline(prompt, generator=generator, num_inference_steps=5)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9