test_pipelines.py 64.7 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
17
import json
18
import os
19
import random
20
import shutil
21
import sys
22
23
import tempfile
import unittest
24
import unittest.mock as mock
25
26
27

import numpy as np
import PIL
28
import requests_mock
29
import safetensors.torch
30
31
32
import torch
from parameterized import parameterized
from PIL import Image
33
from requests.exceptions import HTTPError
34
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
35

36
from diffusers import (
37
    AutoencoderKL,
38
39
40
41
    DDIMPipeline,
    DDIMScheduler,
    DDPMPipeline,
    DDPMScheduler,
42
    DiffusionPipeline,
43
44
45
46
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
47
    PNDMScheduler,
48
    StableDiffusionImg2ImgPipeline,
49
    StableDiffusionInpaintPipelineLegacy,
50
    StableDiffusionPipeline,
51
    UNet2DConditionModel,
52
    UNet2DModel,
53
    UniPCMultistepScheduler,
54
    logging,
55
)
56
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
57
58
59
60
61
62
63
64
65
66
from diffusers.utils import (
    CONFIG_NAME,
    WEIGHTS_NAME,
    floats_tensor,
    is_flax_available,
    nightly,
    require_torch_2,
    slow,
    torch_device,
)
67
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir, load_numpy, require_compel, require_torch_gpu
68
69
70
71
72


torch.backends.cuda.matmul.allow_tf32 = False


73
class DownloadTests(unittest.TestCase):
74
75
76
77
78
79
80
    def test_one_request_upon_cached(self):
        # TODO: For some reason this test fails on MPS where no HEAD call is made.
        if torch_device == "mps":
            return

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
81
                DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe", cache_dir=tmpdirname)
82
83

            download_requests = [r.method for r in m.request_history]
84
            assert download_requests.count("HEAD") == 15, "15 calls to files"
85
86
            assert download_requests.count("GET") == 17, "15 calls to files + model_info + model_index.json"
            assert (
87
                len(download_requests) == 32
88
89
90
91
92
93
94
95
            ), "2 calls per file (15 files) + send_telemetry, model_info and model_index.json"

            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            cache_requests = [r.method for r in m.request_history]
96
            assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
97
98
99
100
101
            assert cache_requests.count("GET") == 1, "model info is only GET"
            assert (
                len(cache_requests) == 2
            ), "We should call only `model_info` to check for _commit hash and `send_telemetry`"

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    def test_less_downloads_passed_object(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            cached_folder = DiffusionPipeline.download(
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

            # make sure safety checker is not downloaded
            assert "safety_checker" not in os.listdir(cached_folder)

            # make sure rest is downloaded
            assert "unet" in os.listdir(cached_folder)
            assert "tokenizer" in os.listdir(cached_folder)
            assert "vae" in os.listdir(cached_folder)
            assert "model_index.json" in os.listdir(cached_folder)
            assert "scheduler" in os.listdir(cached_folder)
            assert "feature_extractor" in os.listdir(cached_folder)

    def test_less_downloads_passed_object_calls(self):
        # TODO: For some reason this test fails on MPS where no HEAD call is made.
        if torch_device == "mps":
            return

        with tempfile.TemporaryDirectory() as tmpdirname:
            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            download_requests = [r.method for r in m.request_history]
            # 15 - 2 because no call to config or model file for `safety_checker`
            assert download_requests.count("HEAD") == 13, "13 calls to files"
            # 17 - 2 because no call to config or model file for `safety_checker`
            assert download_requests.count("GET") == 15, "13 calls to files + model_info + model_index.json"
            assert (
                len(download_requests) == 28
            ), "2 calls per file (13 files) + send_telemetry, model_info and model_index.json"

            with requests_mock.mock(real_http=True) as m:
                DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
                )

            cache_requests = [r.method for r in m.request_history]
            assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
            assert cache_requests.count("GET") == 1, "model info is only GET"
            assert (
                len(cache_requests) == 2
            ), "We should call only `model_info` to check for _commit hash and `send_telemetry`"

151
152
153
    def test_download_only_pytorch(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
154
            tmpdirname = DiffusionPipeline.download(
155
156
157
                "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
            )

158
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
159
160
161
162
163
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a flax file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".msgpack") for f in files)
164
165
166
            # We need to never convert this tiny model to safetensors for this test to pass
            assert not any(f.endswith(".safetensors") for f in files)

167
168
169
170
171
172
173
174
175
176
177
    def test_force_safetensors_error(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            with self.assertRaises(EnvironmentError):
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-no-safetensors",
                    safety_checker=None,
                    cache_dir=tmpdirname,
                    use_safetensors=True,
                )

178
179
180
181
182
183
184
185
186
187
188
    def test_returned_cached_folder(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        _, local_path = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, return_cached_folder=True
        )
        pipe_2 = StableDiffusionPipeline.from_pretrained(local_path)

        pipe = pipe.to(torch_device)
189
        pipe_2 = pipe_2.to(torch_device)
190

191
        generator = torch.manual_seed(0)
192
193
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

194
        generator = torch.manual_seed(0)
195
196
197
198
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        assert np.max(np.abs(out - out_2)) < 1e-3

199
200
201
    def test_download_safetensors(self):
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
202
            tmpdirname = DiffusionPipeline.download(
203
204
205
206
207
                "hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
                safety_checker=None,
                cache_dir=tmpdirname,
            )

208
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
209
210
211
212
213
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f.endswith(".bin") for f in files)
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    def test_download_safetensors_index(self):
        for variant in ["fp16", None]:
            with tempfile.TemporaryDirectory() as tmpdirname:
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    cache_dir=tmpdirname,
                    use_safetensors=True,
                    variant=variant,
                )

                all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a safetensors file even if we have some here:
                # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
                if variant is None:
                    assert not any("fp16" in f for f in files)
                else:
                    model_files = [f for f in files if "safetensors" in f]
                    assert all("fp16" in f for f in model_files)

                assert len([f for f in files if ".safetensors" in f]) == 8
                assert not any(".bin" in f for f in files)

    def test_download_bin_index(self):
        for variant in ["fp16", None]:
            with tempfile.TemporaryDirectory() as tmpdirname:
                tmpdirname = DiffusionPipeline.download(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    cache_dir=tmpdirname,
                    use_safetensors=False,
                    variant=variant,
                )

                all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a safetensors file even if we have some here:
                # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
                if variant is None:
                    assert not any("fp16" in f for f in files)
                else:
                    model_files = [f for f in files if "bin" in f]
                    assert all("fp16" in f for f in model_files)

                assert len([f for f in files if ".bin" in f]) == 8
                assert not any(".safetensors" in f for f in files)

263
264
265
266
267
    def test_download_no_safety_checker(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
268
        pipe = pipe.to(torch_device)
269
        generator = torch.manual_seed(0)
270
271
272
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
273
        pipe_2 = pipe_2.to(torch_device)
274
        generator = torch.manual_seed(0)
275
        out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
276
277
278
279
280
281
282
283

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_explicit_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
284
        pipe = pipe.to(torch_device)
285
        generator = torch.manual_seed(0)
286
287
288
289
290
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
291
            pipe_2 = pipe_2.to(torch_device)
292

293
            generator = torch.manual_seed(0)
294
295

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
296
297
298
299
300
301

        assert np.max(np.abs(out - out_2)) < 1e-3

    def test_load_no_safety_checker_default_locally(self):
        prompt = "hello"
        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
302
        pipe = pipe.to(torch_device)
303
304

        generator = torch.manual_seed(0)
305
306
307
308
309
        out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
310
            pipe_2 = pipe_2.to(torch_device)
311

312
            generator = torch.manual_seed(0)
313
314

            out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images
315
316
317

        assert np.max(np.abs(out - out_2)) < 1e-3

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    def test_cached_files_are_used_when_no_internet(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = {}
        response_mock.raise_for_status.side_effect = HTTPError
        response_mock.json.return_value = {}

        # Download this model to make sure it's in the cache.
        orig_pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("requests.request", return_value=response_mock):
            # Download this model to make sure it's in the cache.
            pipe = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None, local_files_only=True
            )
            comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}

        for m1, m2 in zip(orig_comps.values(), comps.values()):
            for p1, p2 in zip(m1.parameters(), m2.parameters()):
                if p1.data.ne(p2.data).sum() > 0:
                    assert False, "Parameters not the same!"

    def test_download_from_variant_folder(self):
        for safe_avail in [False, True]:
            import diffusers

            diffusers.utils.import_utils._safetensors_available = safe_avail

            other_format = ".bin" if safe_avail else ".safetensors"
            with tempfile.TemporaryDirectory() as tmpdirname:
353
                tmpdirname = StableDiffusionPipeline.download(
354
355
                    "hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname
                )
356
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                assert not any(f.endswith(other_format) for f in files)
                # no variants
                assert not any(len(f.split(".")) == 3 for f in files)

        diffusers.utils.import_utils._safetensors_available = True

    def test_download_variant_all(self):
        for safe_avail in [False, True]:
            import diffusers

            diffusers.utils.import_utils._safetensors_available = safe_avail

            other_format = ".bin" if safe_avail else ".safetensors"
            this_format = ".safetensors" if safe_avail else ".bin"
            variant = "fp16"

            with tempfile.TemporaryDirectory() as tmpdirname:
379
                tmpdirname = StableDiffusionPipeline.download(
380
381
                    "hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant
                )
382
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a non-variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # unet, vae, text_encoder, safety_checker
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 4
                # all checkpoints should have variant ending
                assert not any(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files)
                assert not any(f.endswith(other_format) for f in files)

        diffusers.utils.import_utils._safetensors_available = True

    def test_download_variant_partly(self):
        for safe_avail in [False, True]:
            import diffusers

            diffusers.utils.import_utils._safetensors_available = safe_avail

            other_format = ".bin" if safe_avail else ".safetensors"
            this_format = ".safetensors" if safe_avail else ".bin"
            variant = "no_ema"

            with tempfile.TemporaryDirectory() as tmpdirname:
407
                tmpdirname = StableDiffusionPipeline.download(
408
409
                    "hf-internal-testing/stable-diffusion-all-variants", cache_dir=tmpdirname, variant=variant
                )
410
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
411
412
                files = [item for sublist in all_root_files for item in sublist]

413
                unet_files = os.listdir(os.path.join(tmpdirname, "unet"))
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

                # Some of the downloaded files should be a non-variant file, check:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # only unet has "no_ema" variant
                assert f"diffusion_pytorch_model.{variant}{this_format}" in unet_files
                assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 1
                # vae, safety_checker and text_encoder should have no variant
                assert sum(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) == 3
                assert not any(f.endswith(other_format) for f in files)

        diffusers.utils.import_utils._safetensors_available = True

    def test_download_broken_variant(self):
        for safe_avail in [False, True]:
            import diffusers

            diffusers.utils.import_utils._safetensors_available = safe_avail
            # text encoder is missing no variant and "no_ema" variant weights, so the following can't work
            for variant in [None, "no_ema"]:
                with self.assertRaises(OSError) as error_context:
                    with tempfile.TemporaryDirectory() as tmpdirname:
436
                        tmpdirname = StableDiffusionPipeline.from_pretrained(
437
438
439
440
441
442
443
444
445
                            "hf-internal-testing/stable-diffusion-broken-variants",
                            cache_dir=tmpdirname,
                            variant=variant,
                        )

                assert "Error no file name" in str(error_context.exception)

            # text encoder has fp16 variants so we can load it
            with tempfile.TemporaryDirectory() as tmpdirname:
446
                tmpdirname = StableDiffusionPipeline.download(
447
448
449
                    "hf-internal-testing/stable-diffusion-broken-variants", cache_dir=tmpdirname, variant="fp16"
                )

450
                all_root_files = [t[-1] for t in os.walk(tmpdirname)]
451
452
453
454
455
456
457
458
459
                files = [item for sublist in all_root_files for item in sublist]

                # None of the downloaded files should be a non-variant file even if we have some here:
                # https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
                assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
                # only unet has "no_ema" variant

        diffusers.utils.import_utils._safetensors_available = True

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    def test_local_save_load_index(self):
        prompt = "hello"
        for variant in [None, "fp16"]:
            for use_safe in [True, False]:
                pipe = StableDiffusionPipeline.from_pretrained(
                    "hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
                    variant=variant,
                    use_safetensors=use_safe,
                    safety_checker=None,
                )
                pipe = pipe.to(torch_device)
                generator = torch.manual_seed(0)
                out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pipe.save_pretrained(tmpdirname)
                    pipe_2 = StableDiffusionPipeline.from_pretrained(
                        tmpdirname, safe_serialization=use_safe, variant=variant
                    )
                    pipe_2 = pipe_2.to(torch_device)

                generator = torch.manual_seed(0)

                out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="numpy").images

                assert np.max(np.abs(out - out_2)) < 1e-3

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
    def test_text_inversion_download(self):
        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe = pipe.to(torch_device)

        num_tokens = len(pipe.tokenizer)

        # single token load local
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<*>": torch.ones((32,))}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname)

            token = pipe.tokenizer.convert_tokens_to_ids("<*>")
            assert token == num_tokens, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
            assert pipe._maybe_convert_prompt("<*>", pipe.tokenizer) == "<*>"

            prompt = "hey <*>"
            out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
            assert out.shape == (1, 128, 128, 3)

        # single token load local with weight name
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<**>": 2 * torch.ones((1, 32))}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname, weight_name="learned_embeds.bin")

            token = pipe.tokenizer.convert_tokens_to_ids("<**>")
            assert token == num_tokens + 1, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
            assert pipe._maybe_convert_prompt("<**>", pipe.tokenizer) == "<**>"

            prompt = "hey <**>"
            out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
            assert out.shape == (1, 128, 128, 3)

        # multi token load
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {"<***>": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])}
            torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))

            pipe.load_textual_inversion(tmpdirname)

            token = pipe.tokenizer.convert_tokens_to_ids("<***>")
            token_1 = pipe.tokenizer.convert_tokens_to_ids("<***>_1")
            token_2 = pipe.tokenizer.convert_tokens_to_ids("<***>_2")

            assert token == num_tokens + 2, "Added token must be at spot `num_tokens`"
            assert token_1 == num_tokens + 3, "Added token must be at spot `num_tokens`"
            assert token_2 == num_tokens + 4, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
            assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
544
            assert pipe._maybe_convert_prompt("<***>", pipe.tokenizer) == "<***> <***>_1 <***>_2"
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

            prompt = "hey <***>"
            out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
            assert out.shape == (1, 128, 128, 3)

        # multi token load a1111
        with tempfile.TemporaryDirectory() as tmpdirname:
            ten = {
                "string_to_param": {
                    "*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
                },
                "name": "<****>",
            }
            torch.save(ten, os.path.join(tmpdirname, "a1111.bin"))

            pipe.load_textual_inversion(tmpdirname, weight_name="a1111.bin")

            token = pipe.tokenizer.convert_tokens_to_ids("<****>")
            token_1 = pipe.tokenizer.convert_tokens_to_ids("<****>_1")
            token_2 = pipe.tokenizer.convert_tokens_to_ids("<****>_2")

            assert token == num_tokens + 5, "Added token must be at spot `num_tokens`"
            assert token_1 == num_tokens + 6, "Added token must be at spot `num_tokens`"
            assert token_2 == num_tokens + 7, "Added token must be at spot `num_tokens`"
            assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
            assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
            assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
572
            assert pipe._maybe_convert_prompt("<****>", pipe.tokenizer) == "<****> <****>_1 <****>_2"
573
574
575
576
577

            prompt = "hey <****>"
            out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
            assert out.shape == (1, 128, 128, 3)

578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
        # multi embedding load
        with tempfile.TemporaryDirectory() as tmpdirname1:
            with tempfile.TemporaryDirectory() as tmpdirname2:
                ten = {"<*****>": torch.ones((32,))}
                torch.save(ten, os.path.join(tmpdirname1, "learned_embeds.bin"))

                ten = {"<******>": 2 * torch.ones((1, 32))}
                torch.save(ten, os.path.join(tmpdirname2, "learned_embeds.bin"))

                pipe.load_textual_inversion([tmpdirname1, tmpdirname2])

                token = pipe.tokenizer.convert_tokens_to_ids("<*****>")
                assert token == num_tokens + 8, "Added token must be at spot `num_tokens`"
                assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32
                assert pipe._maybe_convert_prompt("<*****>", pipe.tokenizer) == "<*****>"

                token = pipe.tokenizer.convert_tokens_to_ids("<******>")
                assert token == num_tokens + 9, "Added token must be at spot `num_tokens`"
                assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
                assert pipe._maybe_convert_prompt("<******>", pipe.tokenizer) == "<******>"

                prompt = "hey <*****> <******>"
                out = pipe(prompt, num_inference_steps=1, output_type="numpy").images
                assert out.shape == (1, 128, 128, 3)

Patrick von Platen's avatar
Patrick von Platen committed
603
604
605
606
607
608
609
610
611
612
613
614
615
    def test_download_ignore_files(self):
        # Check https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files/blob/72f58636e5508a218c6b3f60550dc96445547817/model_index.json#L4
        with tempfile.TemporaryDirectory() as tmpdirname:
            # pipeline has Flax weights
            tmpdirname = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files")
            all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
            files = [item for sublist in all_root_files for item in sublist]

            # None of the downloaded files should be a pytorch file even if we have some here:
            # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
            assert not any(f in ["vae/diffusion_pytorch_model.bin", "text_encoder/config.json"] for f in files)
            assert len(files) == 14

616

Patrick von Platen's avatar
Patrick von Platen committed
617
618
619
620
621
class CustomPipelineTests(unittest.TestCase):
    def test_load_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
622
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
623
624
625
626
        # NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
        # under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
        assert pipeline.__class__.__name__ == "CustomPipeline"

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
    def test_load_custom_github(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="main"
        )

        # make sure that on "main" pipeline gives only ones because of: https://github.com/huggingface/diffusers/pull/1690
        with torch.no_grad():
            output = pipeline()

        assert output.numel() == output.sum()

        # hack since Python doesn't like overwriting modules: https://stackoverflow.com/questions/3105801/unload-a-module-in-python
        # Could in the future work with hashes instead.
        del sys.modules["diffusers_modules.git.one_step_unet"]

        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="0.10.2"
        )
        with torch.no_grad():
            output = pipeline()

        assert output.numel() != output.sum()

        assert pipeline.__class__.__name__ == "UnetSchedulerOneForwardPipeline"

Patrick von Platen's avatar
Patrick von Platen committed
652
653
654
655
    def test_run_custom_pipeline(self):
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
        )
656
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
657
658
659
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert images[0].shape == (1, 32, 32, 3)
660

Patrick von Platen's avatar
Patrick von Platen committed
661
662
663
        # compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
        assert output_str == "This is a test"

664
    def test_local_custom_pipeline_repo(self):
Patrick von Platen's avatar
Patrick von Platen committed
665
666
667
668
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
669
        pipeline = pipeline.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
670
671
672
673
674
675
676
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

677
678
679
680
681
682
683
684
685
686
687
688
689
690
    def test_local_custom_pipeline_file(self):
        local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
        local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
        pipeline = DiffusionPipeline.from_pretrained(
            "google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
        )
        pipeline = pipeline.to(torch_device)
        images, output_str = pipeline(num_inference_steps=2, output_type="np")

        assert pipeline.__class__.__name__ == "CustomLocalPipeline"
        assert images[0].shape == (1, 32, 32, 3)
        # compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
        assert output_str == "This is a local test"

Patrick von Platen's avatar
Patrick von Platen committed
691
    @slow
692
    @require_torch_gpu
693
    def test_download_from_git(self):
Patrick von Platen's avatar
Patrick von Platen committed
694
695
        clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"

696
        feature_extractor = CLIPImageProcessor.from_pretrained(clip_model_id)
697
        clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
Patrick von Platen's avatar
Patrick von Platen committed
698
699
700
701
702
703

        pipeline = DiffusionPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            custom_pipeline="clip_guided_stable_diffusion",
            clip_model=clip_model,
            feature_extractor=feature_extractor,
704
            torch_dtype=torch.float16,
Patrick von Platen's avatar
Patrick von Platen committed
705
        )
706
        pipeline.enable_attention_slicing()
Patrick von Platen's avatar
Patrick von Platen committed
707
708
709
710
711
712
713
714
715
        pipeline = pipeline.to(torch_device)

        # NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
        # https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
        assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"

        image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
        assert image.shape == (512, 512, 3)

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
    def test_save_pipeline_change_config(self):
        pipe = DiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = DiffusionPipeline.from_pretrained(tmpdirname)

            assert pipe.scheduler.__class__.__name__ == "PNDMScheduler"

        # let's make sure that changing the scheduler is correctly reflected
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
            pipe.save_pretrained(tmpdirname)
            pipe = DiffusionPipeline.from_pretrained(tmpdirname)

            assert pipe.scheduler.__class__.__name__ == "DPMSolverMultistepScheduler"

Patrick von Platen's avatar
Patrick von Platen committed
735

736
class PipelineFastTests(unittest.TestCase):
737
738
739
740
741
742
743
744
745
746
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

        import diffusers

        diffusers.utils.import_utils._safetensors_available = True

747
748
749
750
751
752
753
754
    def dummy_image(self):
        batch_size = 1
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
        return image

755
    def dummy_uncond_unet(self, sample_size=32):
756
757
758
759
        torch.manual_seed(0)
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
760
            sample_size=sample_size,
761
762
763
764
765
766
767
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        return model

768
    def dummy_cond_unet(self, sample_size=32):
769
770
771
772
        torch.manual_seed(0)
        model = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
773
            sample_size=sample_size,
774
775
776
777
778
779
780
781
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        return model

782
    @property
783
784
785
786
787
788
789
790
791
792
793
794
    def dummy_vae(self):
        torch.manual_seed(0)
        model = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        return model

795
    @property
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModel(config)

811
    @property
812
813
814
815
816
817
818
819
820
821
822
823
824
825
    def dummy_extractor(self):
        def extract(*args, **kwargs):
            class Out:
                def __init__(self):
                    self.pixel_values = torch.ones([0])

                def to(self, device):
                    self.pixel_values.to(device)
                    return self

            return Out()

        return extract

826
827
828
    @parameterized.expand(
        [
            [DDIMScheduler, DDIMPipeline, 32],
829
            [DDPMScheduler, DDPMPipeline, 32],
830
            [DDIMScheduler, DDIMPipeline, (32, 64)],
831
            [DDPMScheduler, DDPMPipeline, (64, 32)],
832
833
834
835
836
837
838
        ]
    )
    def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
        unet = self.dummy_uncond_unet(sample_size)
        scheduler = scheduler_fn()
        pipeline = pipeline_fn(unet, scheduler).to(torch_device)

839
        generator = torch.manual_seed(0)
840
841
842
843
844
845
846
847
848
        out_image = pipeline(
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images
        sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
        assert out_image.shape == (1, *sample_size, 3)

    def test_stable_diffusion_components(self):
849
        """Test that components property works correctly"""
850
        unet = self.dummy_cond_unet()
851
        scheduler = PNDMScheduler(skip_prk_steps=True)
852
853
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
854
855
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

856
        image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
857
        init_image = Image.fromarray(np.uint8(image)).convert("RGB")
Patrick von Platen's avatar
Patrick von Platen committed
858
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
859
860

        # make sure here that pndm scheduler skips prk
861
        inpaint = StableDiffusionInpaintPipelineLegacy(
862
863
864
865
866
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
867
            safety_checker=None,
868
            feature_extractor=self.dummy_extractor,
869
870
871
        ).to(torch_device)
        img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
        text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
872
873

        prompt = "A painting of a squirrel eating a burger"
874

875
        generator = torch.manual_seed(0)
876
        image_inpaint = inpaint(
877
878
879
880
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
881
            image=init_image,
882
883
884
            mask_image=mask_image,
        ).images
        image_img2img = img2img(
885
886
887
888
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
889
            image=init_image,
890
891
892
        ).images
        image_text2img = text2img(
            [prompt],
893
894
895
            generator=generator,
            num_inference_steps=2,
            output_type="np",
896
        ).images
897

898
899
        assert image_inpaint.shape == (1, 32, 32, 3)
        assert image_img2img.shape == (1, 32, 32, 3)
900
        assert image_text2img.shape == (1, 64, 64, 3)
901

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
    @require_torch_gpu
    def test_pipe_false_offload_warn(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.enable_model_cpu_offload()

        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        with CaptureLogger(logger) as cap_logger:
            sd.to("cuda")

        assert "It is strongly recommended against doing so" in str(cap_logger)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

938
    def test_set_scheduler(self):
939
        unet = self.dummy_cond_unet()
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDIMScheduler)
        sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DDPMScheduler)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, PNDMScheduler)
        sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, LMSDiscreteScheduler)
        sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerDiscreteScheduler)
        sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
        sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
        assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)

970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    def test_set_component_to_none(self):
        unet = self.dummy_cond_unet()
        scheduler = PNDMScheduler(skip_prk_steps=True)
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        pipeline = StableDiffusionPipeline(
            unet=unet,
            scheduler=scheduler,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        generator = torch.Generator(device="cpu").manual_seed(0)

        prompt = "This is a flower"

        out_image = pipeline(
            prompt=prompt,
            generator=generator,
            num_inference_steps=1,
            output_type="np",
        ).images

        pipeline.feature_extractor = None
        generator = torch.Generator(device="cpu").manual_seed(0)
        out_image_2 = pipeline(
            prompt=prompt,
            generator=generator,
            num_inference_steps=1,
            output_type="np",
        ).images

        assert out_image.shape == (1, 64, 64, 3)
        assert np.abs(out_image - out_image_2).max() < 1e-3

1010
    def test_set_scheduler_consistency(self):
1011
        unet = self.dummy_cond_unet()
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        pndm_config = sd.scheduler.config
        sd.scheduler = DDPMScheduler.from_config(pndm_config)
        sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
        pndm_config_2 = sd.scheduler.config
        pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}

        assert dict(pndm_config) == dict(pndm_config_2)

        sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=ddim,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=None,
            feature_extractor=self.dummy_extractor,
        )

        ddim_config = sd.scheduler.config
        sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
        sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
        ddim_config_2 = sd.scheduler.config
        ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}

        assert dict(ddim_config) == dict(ddim_config_2)

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
    def test_save_safe_serialization(self):
        pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        with tempfile.TemporaryDirectory() as tmpdirname:
            pipeline.save_pretrained(tmpdirname, safe_serialization=True)

            # Validate that the VAE safetensor exists and are of the correct format
            vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(vae_path), f"Could not find {vae_path}"
            _ = safetensors.torch.load_file(vae_path)

            # Validate that the UNet safetensor exists and are of the correct format
            unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors")
            assert os.path.exists(unet_path), f"Could not find {unet_path}"
            _ = safetensors.torch.load_file(unet_path)

            # Validate that the text encoder safetensor exists and are of the correct format
            text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors")
1071
1072
            assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}"
            _ = safetensors.torch.load_file(text_encoder_path)
1073
1074
1075
1076
1077
1078
1079
1080

            pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname)
            assert pipeline.unet is not None
            assert pipeline.vae is not None
            assert pipeline.text_encoder is not None
            assert pipeline.scheduler is not None
            assert pipeline.feature_extractor is not None

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
    def test_no_pytorch_download_when_doing_safetensors(self):
        # by default we don't download
        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors exists
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does not
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

    def test_no_safetensors_download_when_doing_pytorch(self):
        # mock diffusers safetensors not available
        import diffusers

        diffusers.utils.import_utils._safetensors_available = False

        with tempfile.TemporaryDirectory() as tmpdirname:
            _ = StableDiffusionPipeline.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
            )

            path = os.path.join(
                tmpdirname,
                "models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
                "snapshots",
                "07838d72e12f9bcec1375b0482b80c1d399be843",
                "unet",
            )
            # safetensors does not exists
            assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
            # pytorch does
            assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))

        diffusers.utils.import_utils._safetensors_available = True

1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
    def test_optional_components(self):
        unet = self.dummy_cond_unet()
        pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
        vae = self.dummy_vae
        bert = self.dummy_text_encoder
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        orig_sd = StableDiffusionPipeline(
            unet=unet,
            scheduler=pndm,
            vae=vae,
            text_encoder=bert,
            tokenizer=tokenizer,
            safety_checker=unet,
            feature_extractor=self.dummy_extractor,
        )
        sd = orig_sd

        assert sd.config.requires_safety_checker is True

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that passing None works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
            )

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that loading previous None works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            orig_sd.save_pretrained(tmpdirname)

            # Test that loading without any directory works
            shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                config["safety_checker"] = [None, None]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

            # Test that loading from deleted model index works
            with open(os.path.join(tmpdirname, sd.config_name)) as f:
                config = json.load(f)
                del config["safety_checker"]
                del config["feature_extractor"]
            with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
                json.dump(config, f)

            sd = StableDiffusionPipeline.from_pretrained(tmpdirname)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor == (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker is False
            assert sd.config.safety_checker == (None, None)
            assert sd.config.feature_extractor != (None, None)

            # Test that partially loading works
            sd = StableDiffusionPipeline.from_pretrained(
                tmpdirname,
                feature_extractor=self.dummy_extractor,
                safety_checker=unet,
                requires_safety_checker=[True, True],
            )

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            sd.save_pretrained(tmpdirname)
            sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)

            assert sd.config.requires_safety_checker == [True, True]
            assert sd.config.safety_checker != (None, None)
            assert sd.config.feature_extractor != (None, None)

1229

1230
@slow
1231
@require_torch_gpu
1232
class PipelineSlowTests(unittest.TestCase):
1233
1234
1235
1236
1237
1238
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1239
1240
1241
    def test_smart_download(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
        with tempfile.TemporaryDirectory() as tmpdirname:
1242
            _ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
            local_repo_name = "--".join(["models"] + model_id.split("/"))
            snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
            snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])

            # inspect all downloaded files to make sure that everything is included
            assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
            assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
            # let's make sure the super large numpy file:
            # https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
            # is not downloaded, but all the expected ones
            assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))

1260
1261
    def test_warning_unused_kwargs(self):
        model_id = "hf-internal-testing/unet-pipeline-dummy"
1262
        logger = logging.get_logger("diffusers.pipelines")
1263
1264
        with tempfile.TemporaryDirectory() as tmpdirname:
            with CaptureLogger(logger) as cap_logger:
1265
                DiffusionPipeline.from_pretrained(
1266
1267
1268
1269
                    model_id,
                    not_used=True,
                    cache_dir=tmpdirname,
                    force_download=True,
1270
                )
1271

1272
        assert (
1273
1274
            cap_logger.out.strip().split("\n")[-1]
            == "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored."
1275
        )
1276

1277
    def test_from_save_pretrained(self):
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
        scheduler = DDPMScheduler(num_train_timesteps=10)

        ddpm = DDPMPipeline(model, scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
            new_ddpm.to(torch_device)

        generator = torch.Generator(device=torch_device).manual_seed(0)
        image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images

        generator = torch.Generator(device=torch_device).manual_seed(0)
        new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    @require_torch_2
    def test_from_save_pretrained_dynamo(self):
        # 1. Load models
        model = UNet2DModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=3,
            out_channels=3,
            down_block_types=("DownBlock2D", "AttnDownBlock2D"),
            up_block_types=("AttnUpBlock2D", "UpBlock2D"),
        )
        model = torch.compile(model)
        scheduler = DDPMScheduler(num_train_timesteps=10)
1321

1322
        ddpm = DDPMPipeline(model, scheduler)
1323
        ddpm.to(torch_device)
1324
        ddpm.set_progress_bar_config(disable=None)
1325
1326
1327

        with tempfile.TemporaryDirectory() as tmpdirname:
            ddpm.save_pretrained(tmpdirname)
1328
            new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
1329
            new_ddpm.to(torch_device)
1330

1331
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1332
        image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
1333

1334
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1335
        new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
1336
1337
1338
1339
1340
1341

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub(self):
        model_path = "google/ddpm-cifar10-32"

1342
        scheduler = DDPMScheduler(num_train_timesteps=10)
1343

1344
        ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
1345
        ddpm = ddpm.to(torch_device)
1346
        ddpm.set_progress_bar_config(disable=None)
1347

1348
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
1349
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
1350
        ddpm_from_hub.set_progress_bar_config(disable=None)
1351

1352
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1353
        image = ddpm(generator=generator, num_inference_steps=5, output_type="numpy").images
1354

1355
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1356
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
1357
1358
1359
1360
1361
1362

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_from_pretrained_hub_pass_model(self):
        model_path = "google/ddpm-cifar10-32"

1363
1364
        scheduler = DDPMScheduler(num_train_timesteps=10)

1365
        # pass unet into DiffusionPipeline
1366
1367
        unet = UNet2DModel.from_pretrained(model_path)
        ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
1368
        ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
1369
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1370

1371
        ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
1372
        ddpm_from_hub = ddpm_from_hub.to(torch_device)
1373
        ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
1374

1375
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1376
        image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="numpy").images
1377

1378
        generator = torch.Generator(device=torch_device).manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1379
        new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="numpy").images
1380
1381
1382
1383
1384
1385

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"

    def test_output_format(self):
        model_path = "google/ddpm-cifar10-32"

1386
        scheduler = DDIMScheduler.from_pretrained(model_path)
Patrick von Platen's avatar
Patrick von Platen committed
1387
        pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
1388
        pipe.to(torch_device)
1389
        pipe.set_progress_bar_config(disable=None)
1390

1391
        images = pipe(output_type="numpy").images
1392
1393
1394
        assert images.shape == (1, 32, 32, 3)
        assert isinstance(images, np.ndarray)

1395
        images = pipe(output_type="pil", num_inference_steps=4).images
1396
1397
1398
1399
1400
        assert isinstance(images, list)
        assert len(images) == 1
        assert isinstance(images[0], PIL.Image.Image)

        # use PIL by default
1401
        images = pipe(num_inference_steps=4).images
1402
1403
1404
        assert isinstance(images, list)
        assert isinstance(images[0], PIL.Image.Image)

1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
    def test_from_flax_from_pt(self):
        pipe_pt = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
        )
        pipe_pt.to(torch_device)

        if not is_flax_available():
            raise ImportError("Make sure flax is installed.")

        from diffusers import FlaxStableDiffusionPipeline

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_pt.save_pretrained(tmpdirname)

            pipe_flax, params = FlaxStableDiffusionPipeline.from_pretrained(
                tmpdirname, safety_checker=None, from_pt=True
            )

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe_flax.save_pretrained(tmpdirname, params=params)
            pipe_pt_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None, from_flax=True)
            pipe_pt_2.to(torch_device)

        prompt = "Hello"

        generator = torch.manual_seed(0)
        image_0 = pipe_pt(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        generator = torch.manual_seed(0)
        image_1 = pipe_pt_2(
            [prompt],
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        ).images[0]

        assert np.abs(image_0 - image_1).sum() < 1e-5, "Models don't give the same forward pass"

1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
    @require_compel
    def test_weighted_prompts_compel(self):
        from compel import Compel

        pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
        pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
        pipe.enable_model_cpu_offload()
        pipe.enable_attention_slicing()

        compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)

        prompt = "a red cat playing with a ball{}"

        prompts = [prompt.format(s) for s in ["", "++", "--"]]

        prompt_embeds = compel(prompts)

        generator = [torch.Generator(device="cpu").manual_seed(33) for _ in range(prompt_embeds.shape[0])]

        images = pipe(
            prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20, output_type="numpy"
        ).images

        for i, image in enumerate(images):
            expected_image = load_numpy(
                "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
                f"/compel/forest_{i}.npy"
            )

1477
            assert np.abs(image - expected_image).max() < 1e-2
1478

1479
1480
1481
1482
1483
1484
1485
1486
1487
1488

@nightly
@require_torch_gpu
class PipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1489
1490
    def test_ddpm_ddim_equality_batched(self):
        seed = 0
1491
        model_id = "google/ddpm-cifar10-32"
1492

1493
        unet = UNet2DModel.from_pretrained(model_id)
1494
1495
        ddpm_scheduler = DDPMScheduler()
        ddim_scheduler = DDIMScheduler()
1496

1497
1498
1499
        ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
        ddpm.to(torch_device)
        ddpm.set_progress_bar_config(disable=None)
1500

1501
1502
1503
        ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
        ddim.to(torch_device)
        ddim.set_progress_bar_config(disable=None)
1504

1505
1506
        generator = torch.Generator(device=torch_device).manual_seed(seed)
        ddpm_images = ddpm(batch_size=2, generator=generator, output_type="numpy").images
1507

1508
        generator = torch.Generator(device=torch_device).manual_seed(seed)
1509
        ddim_images = ddim(
1510
            batch_size=2,
1511
1512
1513
1514
1515
            generator=generator,
            num_inference_steps=1000,
            eta=1.0,
            output_type="numpy",
            use_clipped_model_output=True,  # Need this to make DDIM match DDPM
1516
        ).images
1517

1518
1519
        # the values aren't exactly equal, but the images look the same visually
        assert np.abs(ddpm_images - ddim_images).max() < 1e-1