1. 02 Aug, 2023 1 commit
  2. 01 Aug, 2023 1 commit
  3. 24 Jul, 2023 1 commit
  4. 14 Jul, 2023 1 commit
  5. 15 Jun, 2023 1 commit
  6. 12 Jun, 2023 1 commit
  7. 02 Jun, 2023 1 commit
  8. 30 May, 2023 1 commit
  9. 24 May, 2023 1 commit
  10. 16 May, 2023 1 commit
  11. 10 May, 2023 1 commit
  12. 28 Apr, 2023 1 commit
  13. 06 Apr, 2023 1 commit
  14. 22 Mar, 2023 1 commit
  15. 15 Mar, 2023 1 commit
  16. 08 Mar, 2023 1 commit
    • Xin Yao's avatar
      [Refactor] Replace third_party/nccl with PyTorch's NCCL backend (#4989) · 8d5d8962
      Xin Yao authored
      * expose GeneratePermutation
      
      * add sparse_all_to_all_push
      
      * add sparse_all_to_all_pull
      
      * add unit test
      
      * handle world_size=1
      
      * remove python nccl wrapper
      
      * remove the nccl dependency
      
      * use pinned memory to speedup D2H copy
      
      * fix lint
      
      * resolve comments
      
      * fix lint
      
      * fix ut
      
      * resolve comments
      8d5d8962
  17. 03 Mar, 2023 1 commit
  18. 01 Mar, 2023 1 commit
  19. 16 Feb, 2023 1 commit
  20. 16 Jan, 2023 1 commit
  21. 06 Jan, 2023 1 commit
  22. 21 Dec, 2022 1 commit
    • czkkkkkk's avatar
      [Sparse] Support SpMM and SDDMM (#5032) · 1f2fcae3
      czkkkkkk authored
      * [Sparse] Support SpMM and SDDMM
      
      * Add SDDMMAutoGrad
      
      * Rename SpMMImpl and SDDMMImpl and move them to dgl_sparse/src/matmul.h
      
      * Update comments
      
      * Update
      
      * Minor fix
      1f2fcae3
  23. 12 Dec, 2022 2 commits
  24. 08 Dec, 2022 1 commit
  25. 01 Dec, 2022 1 commit
  26. 23 Nov, 2022 1 commit
  27. 22 Nov, 2022 1 commit
    • Muhammed Fatih BALIN's avatar
      [Feature] (La)yer-Neigh(bor) sampling implementation (#4668) · bf264d00
      Muhammed Fatih BALIN authored
      
      
      * adding LABOR sampling
      
      * add ladies and pladies samplers
      
      * fix compile error after rebase
      
      * add reference for ladies sampler
      
      * Improve ladies implementation.
      
      * weighted labor sampling initial implementation draft
      fix indentation and small bug in ladies script
      
      * importance_sampling currently doesn't work with weights
      
      * fix weighted importance sampling
      
      * move labor example into its own folder
      
      * lint fixes
      
      * Improve documentation
      
      * remove examples from the main PR
      
      * fix linting by not using c++17 features
      
      * fix documentation of labor_sampler.py
      
      * update documentation for labor.py
      
      * reformat the labor.py file with black
      
      * fix linting errors
      
      * replace exception use with if
      
      * fix typo in error comment
      
      * fixing win64 build for ci
      
      * fixing weighted implementation, works now.
      
      * fix bug in the weighted case and importance_sampling==0
      
      * address part of the reviews
      
      * remove unused code paths from cuda
      
      * remove unused code path from cpu side
      
      * remove extra features of labor making use of random seed.
      
      * fix exclude_edges bug
      
      * remove pcg and seed logic from cpu implementation, seed logic should still work for cuda.
      
      * minor style change
      
      * refactor CPU implementation, take out the importance_sampling probability computation into a function.
      
      * improve CUDAWorkspaceAllocator
      
      * refactor importance_sampling part out to a function
      
      * minor optimization
      
      * fix linting issue
      
      * Revert "remove pcg and seed logic from cpu implementation, seed logic should still work for cuda."
      
      This reverts commit c250e07ac6d7e13f57e79e8a2c2f098d777378c2.
      
      * Revert "remove extra features of labor making use of random seed."
      
      This reverts commit 7f99034353080308f4783f27d9a08bea343fb796.
      
      * fix the documentation
      
      * disable NIDs
      
      * improve the documentation in the code
      
      * use the stream argument in pcg32 instead of skipping ahead t times, can discard the use of hashmap now since it is faster this way.
      
      * fix linting issue
      
      * address another round of reviews
      
      * further optimize CPU LABOR sampling implementation
      
      * fix linting error
      
      * update the comment
      
      * reformat
      
      * rename and rephrase comment
      
      * fix formatting according to new linting specs
      
      * fix compile error due to renaming, fix linting.
      
      * lint
      
      * rename DGLHeteroGraph to DGLGraph to match master
      
      * replace other occurrences of DGLHeteroGraph to DGLGraph
      Co-authored-by: default avatarMuhammed Fatih BALIN <m.f.balin@gmail.com>
      Co-authored-by: default avatarKaan Sancak <kaansnck@gmail.com>
      Co-authored-by: default avatarQuan Gan <coin2028@hotmail.com>
      bf264d00
  28. 17 Nov, 2022 1 commit
  29. 07 Nov, 2022 1 commit
    • czkkkkkk's avatar
      [Sparse] Add sparse matrix C++ implementation (#4773) · 7c059e86
      czkkkkkk authored
      * [Sparse] Add sparse matrix C++ implementation
      
      * Add documentation
      
      * Update
      
      * Minor fix
      
      * Move Python code to dgl/mock_sparse2
      
      * Move headers to include
      
      * lint
      
      * Update
      
      * Add dgl_sparse directory
      
      * Move src code to dgl_sparse
      
      * Add __init__.py in tests to avoid naming conflict
      
      * Add dgl sparse so in Jenkinsfile
      
      * Complete docstring & SparseMatrix basic op
      
      * lint
      
      * Disable win tests
      7c059e86
  30. 06 Nov, 2022 1 commit
    • Xin Yao's avatar
      [Feature] Add bfloat16 (bf16) support (#4648) · 96297fb8
      Xin Yao authored
      * add bf16 specializations
      
      * remove SWITCH_BITS
      
      * enable amp for bf16
      
      * remove SWITCH_BITS for cpu kernels
      
      * enbale bf16 based on CUDART
      
      * fix compiling for sm<80
      
      * fix cpu build
      
      * enable unit tests
      
      * update doc
      
      * disable test for CUDA < 11.0
      
      * address comments
      
      * address comments
      96297fb8
  31. 21 Sep, 2022 1 commit
  32. 05 Sep, 2022 2 commits
  33. 29 Jul, 2022 1 commit
    • Xin Yao's avatar
      [Feature] Add CUDA Weighted Neighborhood Sampling (#4064) · 86c81b4e
      Xin Yao authored
      
      
      * add weighted sampling without replacement (A-Chao)
      
      * improve Algorithm A-Chao with block-wise prefix sum
      
      * correctly fill out_idxs
      
      * implement weighted sampling with replacement
      
      * small fix
      
      * merge host-side code of weighted/uniform sampling
      
      * enable unit tests for cuda weighted sampling
      
      * move thrust/cub wrapper to the cmake file
      
      * update docs accordingly
      
      * fix linting
      
      * fix linting
      
      * fix unit test
      
      * Bump external CUB/Thrust versions
      
      * Fix code style and update description of algorithm design
      
      * [Feature] GPU support weighted graph neighbor sampling
      commit by pengqirong(OPPO)
      
      * merge pengqirong's implementation
      
      * revert the change to cub and thrust
      
      * fix linting
      
      * use DeviceSegmentedSort for better performance
      
      * add more comments
      
      * add necessary notes
      
      * add necessary notes
      
      * resolve some comments
      
      * define THRUST_CUB_WRAPPED_NAMESPACE
      
      * fix doc
      Co-authored-by: default avatar彭齐荣 <657017034@qq.com>
      86c81b4e
  34. 07 Jul, 2022 1 commit
  35. 28 Jun, 2022 1 commit
  36. 27 Jun, 2022 1 commit
    • Rhett Ying's avatar
      [Dist] enable USE_EPOLL in default (#4167) · 9d425315
      Rhett Ying authored
      * [Dist] enable USE_EPOLL in default
      
      * fix build issue on windows
      
      * fix build issue on windows
      
      * fix build issue on windows
      
      * fix build issue on windows
      
      * fix build issue on windows
      
      * fix build issue
      9d425315
  37. 08 Jun, 2022 1 commit
  38. 11 May, 2022 1 commit
    • Vikram Sharma's avatar
      Make USE_AVX flag default value OFF (#3983) · 1a6806e2
      Vikram Sharma authored
      
      
      With the emergence of new ISA (like ARM and RISCV) retaining USE_AVX ON default makes the default build instructions fail. Fundamentally DGL does not require the use of AVX for functional working. AVX is mainly needed when to enable optimization. So proposal is to default turn it off and then later during build instructions, folks with AVX capabilities can enable with 
      `cmake .. -DUSE_AVX=ON`
      Co-authored-by: default avatarZihao Ye <expye@outlook.com>
      1a6806e2