- 22 Sep, 2019 1 commit
-
-
Quan (Andy) Gan authored
-
- 20 Sep, 2019 1 commit
-
-
VoVAllen authored
* add transform * lint * lint * fix * fixmx * fix * add test * fix typo * fix default num_classes * change to non-inplace operation * fix lint * fix
-
- 19 Sep, 2019 1 commit
-
-
VoVAllen authored
-
- 17 Sep, 2019 1 commit
-
-
Minjie Wang authored
* WIP. remove graph arg in NodeBatch and EdgeBatch * refactor: use graph adapter for scheduler * WIP: recv * draft impl * stuck at bipartite * bipartite->unitgraph; support dsttype == srctype * pass test_query * pass test_query * pass test_view * test apply * pass udf message passing tests * pass quan's test using builtins * WIP: wildcard slicing * new construct methods * broken * good * add stack cross reducer * fix bug; fix mx * fix bug in csrmm2 when the CSR is not square * lint * removed FlattenedHeteroGraph class * WIP * prop nodes, prop edges, filter nodes/edges * add DGLGraph tests to heterograph. Fix several bugs * finish nx<->hetero graph conversion * create bipartite from nx * more spec on hetero/homo conversion * silly fixes * check node and edge types * repr * to api * adj APIs * inc * fix some lints and bugs * fix some lints * hetero/homo conversion * fix flatten test * more spec in hetero_from_homo and test * flatten using concat names * WIP: creators * rewrite hetero_from_homo in a more efficient way * remove useless variables * fix lint * subgraphs and typed subgraphs * lint & removed heterosubgraph class * lint x2 * disable heterograph mutation test * docstring update * add edge id for nx graph test * fix mx unittests * fix bug * try fix * fix unittest when cross_reducer is stack * fix ci * fix nx bipartite bug; docstring * fix scipy creation bug * lint * fix bug when converting heterograph from homograph * fix bug in hetero_from_homo about ntype order * trailing white * docstring fixes for add_foo and data views * docstring for relation slice * to_hetero and to_homo with feature support * lint * lint * DGLGraph compatibility * incidence matrix & docstring fixes * example string fixes * feature in hetero_from_relations * deduplication of edge types in to_hetero * fix lint * fix
-
- 16 Sep, 2019 2 commits
- 14 Sep, 2019 2 commits
-
-
Zihao Ye authored
-
xiang song(charlie.song) authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Start implementing masked-mm kernel. Add base control flow code. * Add masked dot declare * Update func/variable name * Skeleton compile OK * Update Implement. Unify BinaryDot with BinaryReduce * New Impl of x_dot_x, reuse binary reduce template * Compile OK. TODO: 1. make sure x_add_x, x_sub_x, x_mul_x, x_div_x work 2. let x_dot_x work 3. make sure backward of x_add_x, x_sub_x, x_mul_x, x_div_x work 4. let x_dot_x backward work * Fix code style * Now we can pass the tests/compute/test_kernel.py for add/sub/mul/div forward and backward * Fix mxnet test code * Add u_dot_v, u_dot_e, v_dot_e unitest. * Update doc * Now also support v_dot_u, e_dot_u, e_dot_v * Add unroll for some loop * Add some Opt for cuda backward of dot builtin. Backward is still slow for dot * Apply UnravelRavel opt for broadcast backward * update docstring
-
- 11 Sep, 2019 3 commits
-
-
Da Zheng authored
* PBG negative edge sampler. * add a positive edge to make it regular, handle last batch. * exclude all positive edges in the parent graph. * just uniformly sample negative nodes. * fix lint. * shuffle one-side nodes of positive edges. * just uniformly sample negative nodes. * change the data type. * address comment. * remove commented code.
-
Chao Ma authored
* update * speedup * add some comments
-
VoVAllen authored
-
- 10 Sep, 2019 2 commits
-
-
Mufei Li authored
* Update * Update * Update * Update * Update
-
VoVAllen authored
* Add serialization * add serialization * add serialization * lalalalalalalala * lalalalalalalala * serialize * serialize * nnn * WIP: import tvm runtime node system * WIP: object system * containers * tested basic container composition * tested custom object * tmp * fix setattr bug * tested object container return * fix lint * some comments about get/set state * fix lint * fix lint * update cython * fix cython * ffi doc * fix doc * WIP: using object system for graph * c++ side refactoring done; compiled * remove stale apis * fix bug in DGLGraphCreate; passed test_graph.py * fix bug in python modify; passed utest for pytorch/cpu * fix lint * Add serialization * Add serialization * fix * fix typo * serialize with new ffi * commit * commit * commit * save * save * save * save * commit * clean * Delete tt2.py * fix lint * Add serialization * fix lint 2 * fix lint * fix lint * fix lint * fix lint * Fix Lint * Add serialization * Change to Macro * fix * fix * fix bugs * refactor * refactor * updating dmlc-core to include force flag * trying tempfile * delete leaked pointer * Fix assert * fix assert * add comment and test case * add graph labels * add load labels * lint * lint * add graph labels * lint * fix windows * fix * update dmlc-core to latest * fix * fix camel naming * fix * poke ci
-
- 09 Sep, 2019 2 commits
-
-
VoVAllen authored
* Add serialization * add serialization * add serialization * lalalalalalalala * lalalalalalalala * serialize * serialize * nnn * WIP: import tvm runtime node system * WIP: object system * containers * tested basic container composition * tested custom object * tmp * fix setattr bug * tested object container return * fix lint * some comments about get/set state * fix lint * fix lint * update cython * fix cython * ffi doc * fix doc * WIP: using object system for graph * c++ side refactoring done; compiled * remove stale apis * fix bug in DGLGraphCreate; passed test_graph.py * fix bug in python modify; passed utest for pytorch/cpu * fix lint * Add serialization * Add serialization * fix * fix typo * serialize with new ffi * commit * commit * commit * save * save * save * save * commit * clean * Delete tt2.py * fix lint * Add serialization * fix lint 2 * fix lint * fix lint * fix lint * fix lint * Fix Lint * Add serialization * Change to Macro * fix * fix * fix bugs * refactor * refactor * updating dmlc-core to include force flag * trying tempfile * delete leaked pointer * Fix assert * fix assert * add comment and test case * add graph labels * add load labels * lint * lint * add graph labels * lint * fix windows * fix * update dmlc-core to latest * fix * fix camel naming
-
Zihao Ye authored
* upd * add test * fix * upd * merge * hotfix * upd * fix
-
- 08 Sep, 2019 1 commit
-
-
xiang song(charlie.song) authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * Test performance of udf * trigger * Fix doc * Add nn.TGConv and example * Update test code * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test for mxnet TAGCov * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix * Minor opt for URRevel * Delete test code * Update code style and notes. * Fix func name
-
- 07 Sep, 2019 1 commit
-
-
Mufei Li authored
* Update * Update * Update * Update fix * Update * Update * Refactor * Update * Update * Update * Update * Update * Update * Fix style
-
- 05 Sep, 2019 1 commit
-
-
Zihao Ye authored
* upd * fig edgebatch edges * add test * trigger * upd
-
- 04 Sep, 2019 2 commits
- 03 Sep, 2019 1 commit
-
-
VoVAllen authored
* Add serialization * fix gin * Add serialization * fix gin * fix
-
- 02 Sep, 2019 2 commits
-
-
ziqiaomeng authored
* Prepare for metapath sampler This file is just for reviewing metapath sampling algorithm (Python version). * Delete metapath_sampler * Prepare for metapath sampler This file is just for reviewing metapath sampling algorithm (Python code). * Add files via upload * Create metapath2vec.md * Add files via upload * Delete data_handler.py * Delete word2vec.py * Delete word_train.py * Add files via upload Metapath2vec implementations. Metapath2vec++ needs negative sampler optimization. * Delete shuffle_training.py * Delete test.py * Add files via upload * Delete sampler.py * Delete metapath_sampler.md * Add files via upload * Update and rename shuffle_training.py to metapath2vec.py * Update reading_data.py * Update metapath2vec.md * Update metapath2vec.md * Update metapath2vec.md * Update metapath2vec.md * Update metapath2vec.md * Create label 2 * Delete label 2 * Create testing.md * Add files via upload * Create sample.md * Add files via upload * Delete sampler.py * Add files via upload * Delete googlescholar.8area.author.label.txt * Delete googlescholar.8area.venue.label.txt * Delete testing.md * Delete id_author.txt * Delete id_conf.txt * Delete paper.txt * Delete paper_author.txt * Delete paper_conf.txt * Delete sample.md * Delete sampler.py * Add files via upload * Add files via upload * Add files via upload * Delete reading_data.py * Add files via upload * Add files via upload * Delete metapath2vec.py * Add files via upload * Rename shuffle_training.py to metapath2vec.py * Update metapath2vec.md * Delete reading_data.py * add comments and remov e commented codes
-
MilkshakeForReal authored
* Update conv.py * Update conv.py change `oto` to `to
-
- 01 Sep, 2019 2 commits
-
-
VoVAllen authored
* fix doc * poke ci * poke ci * upd * fix doc * upd * add title for all nn * upd * fix warning * fix
-
MilkshakeForReal authored
-
- 31 Aug, 2019 1 commit
-
-
Mufei Li authored
-
- 30 Aug, 2019 3 commits
-
-
VoVAllen authored
* fix doc * poke ci * poke ci * upd * fix doc * upd * add title for all nn * upd
-
Zihao Ye authored
* upd * up * upd * upd
-
Quan (Andy) Gan authored
-
- 28 Aug, 2019 9 commits
-
-
Da Zheng authored
-
Da Zheng authored
* fix. * update
-
Mufei Li authored
-
Quan (Andy) Gan authored
* [Conda] Update license * doc fixes
-
Quan (Andy) Gan authored
-
Quan (Andy) Gan authored
-
xiang song(charlie.song) authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc * Add nn.TGConv and example * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix -
Quan (Andy) Gan authored
* initial commit * second commit * another commit * change docstring * migrating to dgl.nn * fixes * docs * lint * multiple fixes * doc * renaming nearest neighbor graph
-
Quan (Andy) Gan authored
* initial commit * second commit * another commit * change docstring * migrating to dgl.nn * fixes * docs * lint * multiple fixes * doc
-
- 27 Aug, 2019 2 commits