- 08 Jan, 2020 1 commit
-
-
xiang song(charlie.song) authored
* multi-gpu * Pytorch can run but test has acc problem * pytorch train/eval can run in multi-gpu * Fix eval * Fix * Fix mxnet * trigger * triger * Fix mxnet score_func * Fix * check * FIx default arg * Fix train_mxnet mix_cpu_gpu * Make relation mix_cpu_gpu * delete some dead code * some opt for update * Fix cpu grad update
-
- 05 Jan, 2020 1 commit
-
-
Da Zheng authored
* attach positive. * add neg_deg_sample. * add comment. * add neg_deg_sample for eval. * change the edge sampler. * rename edge sampler in KG. * allow specifying chunk size and negative sample size separately. * fix bugs in KG. * add check in sampler. * add more checks. * fix * add comment. * add comments.
-
- 04 Jan, 2020 1 commit
-
-
Da Zheng authored
* remove parallel sampling for multiprocessing. * avoid memory copy in eval. * remove print.
-
- 03 Jan, 2020 1 commit
-
-
Da Zheng authored
* add no_eval_filter * fix eval.
-
- 13 Dec, 2019 1 commit
-
-
Da Zheng authored
-
- 01 Dec, 2019 1 commit
-
-
xiang song(charlie.song) authored
* Add L2 distance score for TransE * Update README.md * Use linalg.gemm to speedup mx l2 dist * Fix
-
- 14 Nov, 2019 1 commit
-
-
MilkshakeForReal authored
Add RotatE support for KGE (apps/kg) Performance Result: Dataset FB15k: Result from Paper: MR: 40 MRR: 0.797 HIT@1: 74.6 HIT@3: 83.0 HIT@10: 88.4 Our Impl: MR: 39.6 MRR: 0.725 HIT@1: 62.8 HIT@3: 80.2 HIT@10: 87.5
-
- 01 Nov, 2019 1 commit
-
-
xiang song(charlie.song) authored
* Add TransR for kge * Now Pytorch TransR can run * Add MXNet TransR * Now mxnet can work with small dim size * Add test * Pass simple test_score * Update test with transR score func * Update RESCAL MXNet * Add missing funcs * Update init func for transR score * Revert "Update init func for transR score" This reverts commit 0798bb886095e7581f6675da5343376844ce45b9. * Update score func of TransR MXNet Make it more memory friendly and faster, thourgh it is still very slow and memory consuming * Update best config * Fix ramdom seed for test * Init score-func specific var * Update Readme
-
- 12 Oct, 2019 1 commit
-
-
Chao Ma authored
* Add RESCAL model * update * update * match acc * update * add README.md * fix
-
- 11 Oct, 2019 1 commit
-
-
xiang song(charlie.song) authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc * Add nn.TGConv and example * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test for mxnet TAGCov * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix * reproduce the bug * Fix concurrency bug reported at #755. Also make test_shared_mem_store.py more deterministic. * Update test_shared_mem_store.py * Update dmlc/core * Add complEx for mxnet * ComplEx is ready for MXNet
-
- 04 Oct, 2019 1 commit
-
-
Da Zheng authored
* fix loading and saving. * use numpy.
-
- 02 Oct, 2019 1 commit
-
-
Da Zheng authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc * Add nn.TGConv and example * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test for mxnet TAGCov * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix * init version. * change default value of regularization. * avoid specifying adversarial_temperature * use default eval_interval. * remove original model. * remove optimizer. * set default value of num_proc * set default value of log_interval. * don't need to set neg_sample_size_valid. * remove unused code. * use uni_weight by default. * unify model. * rename model. * remove unnecessary data sampler. * remove the code for checkpoint. * fix eval. * raise exception in invalid arguments. * remove RowAdagrad. * remove unsupported score function for now. * Fix bugs of kg Update README * Update Readme for mxnet distmult * Update README.md * Update README.md * revert changes on dmlc * add tests. * update CI. * add tests script. * reorder tests in CI. * measure performance. * add results on wn18 * remove some code. * rename the training script. * new results on TransE. * remove --train. * add format. * fix. * use EdgeSubgraph. * create PBGNegEdgeSubgraph to simplify the code. * fix test * fix CI. * run nose for unit tests. * remove unused code in dataset. * change argument to save embeddings. * test training and eval scripts in CI. * check Pytorch version. * fix a minor problem in config. * fix a minor bug. * fix readme. * Update README.md * Update README.md * Update README.md
-