- 01 Nov, 2019 1 commit
-
-
John Andrilla authored
-
- 30 Oct, 2019 1 commit
-
-
xiang song(charlie.song) authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc * Add nn.TGConv and example * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test for mxnet TAGCov * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix * reproduce the bug * Fix concurrency bug reported at #755. Also make test_shared_mem_store.py more deterministic. * Update test_shared_mem_store.py * Update dmlc/core * networkx >= 2.4 will break our examples * Update tutorials/requirements * fix selfloop edges * upd version
-
- 29 Oct, 2019 2 commits
-
-
Jacob Stevens authored
* Change Byte to Bool for training masks * Check if module has Bool, otherwise use Byte
-
Mufei Li authored
* Update * Update
-
- 28 Oct, 2019 1 commit
-
-
Quan (Andy) Gan authored
* [BUG] Fix #717 * fix mxnet test
-
- 26 Oct, 2019 1 commit
-
-
Mufei Li authored
* Update * Update * Update * Update * Update * Update * Fix * Fix
-
- 25 Oct, 2019 3 commits
-
-
Mufei Li authored
* Update * Fix style * Update * Update * Fix * Update * Update
-
Quan (Andy) Gan authored
* Update README.md * Update README.md
-
Mufei Li authored
* Hot fix * CI
-
- 21 Oct, 2019 7 commits
-
-
Mufei Li authored
* Refactor * Add note * Update * CI
-
Da Zheng authored
* add KG statistics. * add Freebase. * fix link.
-
Chao Ma authored
-
Chao Ma authored
-
Mufei Li authored
* Update * Update
-
Xiagkun Hu authored
* rrn model and sudoku * add README * refine the code, add doc strings * add sudoku solver * add example for sudoku_solver * ggnn example * Rewrite README file * fix typos
-
John Andrilla authored
Simple editorial updates
-
- 18 Oct, 2019 1 commit
-
-
Aaron Markham authored
* minor spelling updates * Update docs/source/features/builtin.rst
-
- 12 Oct, 2019 1 commit
-
-
Chao Ma authored
* Add RESCAL model * update * update * match acc * update * add README.md * fix
-
- 11 Oct, 2019 3 commits
-
-
xiang song(charlie.song) authored
It cannot work when only mxnet backend is installed.
-
xiang song(charlie.song) authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc * Add nn.TGConv and example * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test for mxnet TAGCov * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix * reproduce the bug * Fix concurrency bug reported at #755. Also make test_shared_mem_store.py more deterministic. * Update test_shared_mem_store.py * Update dmlc/core * Update Knowledge Graph CI with new Docker image * Remove unused line_profierx * Poke Jenkins * Update test with exit code check and simplify docker * Update Jenkinsfile to make app test a standalone stage * Update kg_test * Update Jenkinsfile * Make some KG test parallel * Update * KG MXNet does not support ComplEx * Update Jenkinsfile * Update Jenkins file * Change torch-1.2 to torch-1.2-cu92 * ci * Update ubuntu_install_mxnet_cpu.sh * Update ubuntu_install_mxnet_gpu.sh * We only need to test train and eval script. Delete some test code -
xiang song(charlie.song) authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc * Add nn.TGConv and example * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test for mxnet TAGCov * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix * reproduce the bug * Fix concurrency bug reported at #755. Also make test_shared_mem_store.py more deterministic. * Update test_shared_mem_store.py * Update dmlc/core * Add complEx for mxnet * ComplEx is ready for MXNet
-
- 09 Oct, 2019 2 commits
- 08 Oct, 2019 5 commits
-
-
Minjie Wang authored
-
Quan (Andy) Gan authored
-
Quan (Andy) Gan authored
-
Quan (Andy) Gan authored
* heterograph tutorial skeleton * [WIP][Tutorial] Heterogeneous graph tutorial * fix * update
-
xiang song(charlie.song) authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc * Add nn.TGConv and example * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test for mxnet TAGCov * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix * reproduce the bug * Fix concurrency bug reported at #755. Also make test_shared_mem_store.py more deterministic. * Update test_shared_mem_store.py * Update dmlc/core
-
- 07 Oct, 2019 2 commits
-
-
Quan (Andy) Gan authored
* [Release] Fix CMake flags * more fix
-
Quan (Andy) Gan authored
-
- 06 Oct, 2019 4 commits
-
-
Quan (Andy) Gan authored
-
Mufei Li authored
* Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * style fixes & undefined name fix * transpose=False in test
-
Quan (Andy) Gan authored
-
Da Zheng authored
* check the number of columns. * add test.
-
- 04 Oct, 2019 2 commits
- 03 Oct, 2019 3 commits
- 02 Oct, 2019 1 commit
-
-
Da Zheng authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc * Add nn.TGConv and example * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test for mxnet TAGCov * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix * init version. * change default value of regularization. * avoid specifying adversarial_temperature * use default eval_interval. * remove original model. * remove optimizer. * set default value of num_proc * set default value of log_interval. * don't need to set neg_sample_size_valid. * remove unused code. * use uni_weight by default. * unify model. * rename model. * remove unnecessary data sampler. * remove the code for checkpoint. * fix eval. * raise exception in invalid arguments. * remove RowAdagrad. * remove unsupported score function for now. * Fix bugs of kg Update README * Update Readme for mxnet distmult * Update README.md * Update README.md * revert changes on dmlc * add tests. * update CI. * add tests script. * reorder tests in CI. * measure performance. * add results on wn18 * remove some code. * rename the training script. * new results on TransE. * remove --train. * add format. * fix. * use EdgeSubgraph. * create PBGNegEdgeSubgraph to simplify the code. * fix test * fix CI. * run nose for unit tests. * remove unused code in dataset. * change argument to save embeddings. * test training and eval scripts in CI. * check Pytorch version. * fix a minor problem in config. * fix a minor bug. * fix readme. * Update README.md * Update README.md * Update README.md
-