1. 11 Oct, 2019 1 commit
    • xiang song(charlie.song)'s avatar
      [KG] Update CI to cover Knowledge Graph (#913) · 93e3c49d
      xiang song(charlie.song) authored
      * upd
      
      * fig edgebatch edges
      
      * add test
      
      * trigger
      
      * Update README.md for pytorch PinSage example.
      
      Add noting that the PinSage model example under
      example/pytorch/recommendation only work with Python 3.6+
      as its dataset loader depends on stanfordnlp package
      which work only with Python 3.6+.
      
      * Provid a frame agnostic API to test nn modules on both CPU and CUDA side.
      
      1. make dgl.nn.xxx frame agnostic
      2. make test.backend include dgl.nn modules
      3. modify test_edge_softmax of test/mxnet/test_nn.py and
          test/pytorch/test_nn.py work on both CPU and GPU
      
      * Fix style
      
      * Delete unused code
      
      * Make agnostic test only related to tests/backend
      
      1. clear all agnostic related code in dgl.nn
      2. make test_graph_conv agnostic to cpu/gpu
      
      * Fix code style
      
      * fix
      
      * doc
      
      * Make all test code under tests.mxnet/pytorch.test_nn.py
      work on both CPU and GPU.
      
      * Fix syntex
      
      * Remove rand
      
      * Add TAGCN nn.module and example
      
      * Now tagcn can run on CPU.
      
      * Add unitest for TGConv
      
      * Fix style
      
      * For pubmed dataset, using --lr=0.005 can achieve better acc
      
      * Fix style
      
      * Fix some descriptions
      
      * trigger
      
      * Fix doc
      
      * Add nn.TGConv and example
      
      * Fix bug
      
      * Update data in mxnet.tagcn test acc.
      
      * Fix some comments and code
      
      * delete useless code
      
      * Fix namming
      
      * Fix bug
      
      * Fix bug
      
      * Add test for mxnet TAGCov
      
      * Add test code for mxnet TAGCov
      
      * Update some docs
      
      * Fix some code
      
      * Update docs dgl.nn.mxnet
      
      * Update weight init
      
      * Fix
      
      * reproduce the bug
      
      * Fix concurrency bug reported at #755.
      Also make test_shared_mem_store.py more deterministic.
      
      * Update test_shared_mem_store.py
      
      * Update dmlc/core
      
      * Update Knowledge Graph CI with new Docker image
      
      * Remove unused line_profierx
      
      * Poke Jenkins
      
      * Update test with exit code check and simplify docker
      
      * Update Jenkinsfile to make app test a standalone stage
      
      * Update kg_test
      
      * Update Jenkinsfile
      
      * Make some KG test parallel
      
      * Update
      
      * KG MXNet does not support ComplEx
      
      * Update Jenkinsfile
      
      * Update Jenkins file
      
      * Change torch-1.2 to torch-1.2-cu92
      
      * ci
      
      * Update ubuntu_install_mxnet_cpu.sh
      
      * Update ubuntu_install_mxnet_gpu.sh
      
      * We only need to test train and eval script.
      Delete some test code
      93e3c49d
  2. 02 Oct, 2019 1 commit
    • Da Zheng's avatar
      [KG][Model] Knowledge graph embeddings (#888) · 15b951d4
      Da Zheng authored
      * upd
      
      * fig edgebatch edges
      
      * add test
      
      * trigger
      
      * Update README.md for pytorch PinSage example.
      
      Add noting that the PinSage model example under
      example/pytorch/recommendation only work with Python 3.6+
      as its dataset loader depends on stanfordnlp package
      which work only with Python 3.6+.
      
      * Provid a frame agnostic API to test nn modules on both CPU and CUDA side.
      
      1. make dgl.nn.xxx frame agnostic
      2. make test.backend include dgl.nn modules
      3. modify test_edge_softmax of test/mxnet/test_nn.py and
          test/pytorch/test_nn.py work on both CPU and GPU
      
      * Fix style
      
      * Delete unused code
      
      * Make agnostic test only related to tests/backend
      
      1. clear all agnostic related code in dgl.nn
      2. make test_graph_conv agnostic to cpu/gpu
      
      * Fix code style
      
      * fix
      
      * doc
      
      * Make all test code under tests.mxnet/pytorch.test_nn.py
      work on both CPU and GPU.
      
      * Fix syntex
      
      * Remove rand
      
      * Add TAGCN nn.module and example
      
      * Now tagcn can run on CPU.
      
      * Add unitest for TGConv
      
      * Fix style
      
      * For pubmed dataset, using --lr=0.005 can achieve better acc
      
      * Fix style
      
      * Fix some descriptions
      
      * trigger
      
      * Fix doc
      
      * Add nn.TGConv and example
      
      * Fix bug
      
      * Update data in mxnet.tagcn test acc.
      
      * Fix some comments and code
      
      * delete useless code
      
      * Fix namming
      
      * Fix bug
      
      * Fix bug
      
      * Add test for mxnet TAGCov
      
      * Add test code for mxnet TAGCov
      
      * Update some docs
      
      * Fix some code
      
      * Update docs dgl.nn.mxnet
      
      * Update weight init
      
      * Fix
      
      * init version.
      
      * change default value of regularization.
      
      * avoid specifying adversarial_temperature
      
      * use default eval_interval.
      
      * remove original model.
      
      * remove optimizer.
      
      * set default value of num_proc
      
      * set default value of log_interval.
      
      * don't need to set neg_sample_size_valid.
      
      * remove unused code.
      
      * use uni_weight by default.
      
      * unify model.
      
      * rename model.
      
      * remove unnecessary data sampler.
      
      * remove the code for checkpoint.
      
      * fix eval.
      
      * raise exception in invalid arguments.
      
      * remove RowAdagrad.
      
      * remove unsupported score function for now.
      
      * Fix bugs of kg
      Update README
      
      * Update Readme for mxnet distmult
      
      * Update README.md
      
      * Update README.md
      
      * revert changes on dmlc
      
      * add tests.
      
      * update CI.
      
      * add tests script.
      
      * reorder tests in CI.
      
      * measure performance.
      
      * add results on wn18
      
      * remove some code.
      
      * rename the training script.
      
      * new results on TransE.
      
      * remove --train.
      
      * add format.
      
      * fix.
      
      * use EdgeSubgraph.
      
      * create PBGNegEdgeSubgraph to simplify the code.
      
      * fix test
      
      * fix CI.
      
      * run nose for unit tests.
      
      * remove unused code in dataset.
      
      * change argument to save embeddings.
      
      * test training and eval scripts in CI.
      
      * check Pytorch version.
      
      * fix a minor problem in config.
      
      * fix a minor bug.
      
      * fix readme.
      
      * Update README.md
      
      * Update README.md
      
      * Update README.md
      15b951d4