"tests/python/vscode:/vscode.git/clone" did not exist on "391f513e58a05d60f2ca177280ccc79d8216b69a"
- 26 Jan, 2020 1 commit
-
-
Minjie Wang authored
* reorg tutorials and api docs * fix
-
- 20 Jan, 2020 1 commit
-
-
Tong He authored
* add env var * Trigger CI * simplification * add doc
-
- 19 Jan, 2020 1 commit
-
-
VoVAllen authored
* several nn example * appnp * fix lint * lint * add dgi * fix * fix * fix * fff * docs * 111 * fix * change init * change result * tiaocan+1 * fix * fix lint * fix * fix
-
- 09 Jan, 2020 1 commit
-
-
Zihao Ye authored
* upd * upd * upd * upd * lint * upd * upd * upd * upd Co-authored-by:VoVAllen <VoVAllen@users.noreply.github.com>
-
- 07 Jan, 2020 1 commit
-
-
- 24 Dec, 2019 1 commit
-
-
Minjie Wang authored
* update work with different backend section * fix some warnings * Update backend.rst * Update index.rst Co-authored-by:VoVAllen <VoVAllen@users.noreply.github.com>
-
- 19 Dec, 2019 1 commit
-
-
Mufei Li authored
* Add several splitting methods * Update * Update * Update * Update * Update * Fix * Update * Update * Update * Update * Fix * Fix * Fix * Fix * Fix * Update * Update * Update * Update * Update * Update * Update * Finally * CI
-
- 13 Dec, 2019 1 commit
-
-
Da Zheng authored
-
- 01 Dec, 2019 1 commit
-
-
Da Zheng authored
-
- 29 Nov, 2019 1 commit
-
-
Quan (Andy) Gan authored
* Update contribute.rst * Update contribute.rst * Update contribute.rst * Update contribute.rst
-
- 27 Nov, 2019 3 commits
-
-
John Andrilla authored
* Edit for grammar and style Improve the flow and readability * Update docs/source/features/nn.rst Better now? NN Modules as a title is vague
-
John Andrilla authored
* grammatical updates Edit pass for readability. Can you clarify: "are of different, but shapes that can be broadcast." Are they of different shapes, but both can be broadcast? * Update docs/source/features/builtin.rst Okay now? Check this for logic.
-
John Andrilla authored
* Grammar and style edit pass In the opening, it would be great to provide some rationale for why you recommend conda or pip. * Update docs/source/install/index.rst Co-Authored-By:
Aaron Markham <markhama@amazon.com> * Update docs/source/install/index.rst Co-Authored-By:
Aaron Markham <markhama@amazon.com> * Update docs/source/install/index.rst Co-Authored-By:
Aaron Markham <markhama@amazon.com>
-
- 26 Nov, 2019 1 commit
-
-
Mufei Li authored
* Update * Update * Update * Fix * CI style fix * CI fix style * Fix * Try CI * Fix test * Update * Update * Update * Update
-
- 22 Nov, 2019 1 commit
-
-
Da Zheng authored
-
- 03 Nov, 2019 1 commit
-
-
Zihao Ye authored
* upd * damn it * fuck * fuck pylint * fudge * remove some comments about MXNet * upd * upd * damn it * damn it * fuck * fuck * upd * upd * pylint bastard * upd * upd * upd * upd * upd * upd * upd * upd * upd
-
- 01 Nov, 2019 1 commit
-
-
John Andrilla authored
-
- 25 Oct, 2019 1 commit
-
-
Mufei Li authored
* Update * Fix style * Update * Update * Fix * Update * Update
-
- 21 Oct, 2019 1 commit
-
-
Mufei Li authored
* Refactor * Add note * Update * CI
-
- 18 Oct, 2019 1 commit
-
-
Aaron Markham authored
* minor spelling updates * Update docs/source/features/builtin.rst
-
- 08 Oct, 2019 1 commit
-
-
Quan (Andy) Gan authored
* heterograph tutorial skeleton * [WIP][Tutorial] Heterogeneous graph tutorial * fix * update
-
- 06 Oct, 2019 1 commit
-
-
Mufei Li authored
* Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * style fixes & undefined name fix * transpose=False in test
-
- 02 Oct, 2019 1 commit
-
-
Da Zheng authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc * Add nn.TGConv and example * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test for mxnet TAGCov * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix * init version. * change default value of regularization. * avoid specifying adversarial_temperature * use default eval_interval. * remove original model. * remove optimizer. * set default value of num_proc * set default value of log_interval. * don't need to set neg_sample_size_valid. * remove unused code. * use uni_weight by default. * unify model. * rename model. * remove unnecessary data sampler. * remove the code for checkpoint. * fix eval. * raise exception in invalid arguments. * remove RowAdagrad. * remove unsupported score function for now. * Fix bugs of kg Update README * Update Readme for mxnet distmult * Update README.md * Update README.md * revert changes on dmlc * add tests. * update CI. * add tests script. * reorder tests in CI. * measure performance. * add results on wn18 * remove some code. * rename the training script. * new results on TransE. * remove --train. * add format. * fix. * use EdgeSubgraph. * create PBGNegEdgeSubgraph to simplify the code. * fix test * fix CI. * run nose for unit tests. * remove unused code in dataset. * change argument to save embeddings. * test training and eval scripts in CI. * check Pytorch version. * fix a minor problem in config. * fix a minor bug. * fix readme. * Update README.md * Update README.md * Update README.md
-
- 30 Sep, 2019 1 commit
-
-
VoVAllen authored
* convert np.ndarray to backend tensor * add datasets * add qm7 * add dataset * add dataset * fix * change ppi * tu dataset * add datasets * fix * fix * fix * fix * add docstring * docs * doc
-
- 27 Sep, 2019 1 commit
-
-
VoVAllen authored
* add transform * lint * lint * fix * fixmx * fix * add test * fix typo * fix default num_classes * change to non-inplace operation * fix lint * fix * fix * fix lint * fixlint
-
- 20 Sep, 2019 1 commit
-
-
VoVAllen authored
* add transform * lint * lint * fix * fixmx * fix * add test * fix typo * fix default num_classes * change to non-inplace operation * fix lint * fix
-
- 19 Sep, 2019 1 commit
-
-
VoVAllen authored
-
- 14 Sep, 2019 2 commits
-
-
Zihao Ye authored
-
xiang song(charlie.song) authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Start implementing masked-mm kernel. A...
-
- 09 Sep, 2019 1 commit
-
-
VoVAllen authored
* Add serialization * add serialization * add serialization * lalalalalalalala * lalalalalalalala * serialize * serialize * nnn * WIP: import tvm runtime node system * WIP: object system * containers * tested basic container composition * tested custom object * tmp * fix setattr bug * tested object container return * fix lint * some comments about get/set state * fix lint * fix lint * update cython * fix cython * ffi doc * fix doc * WIP: using object system for graph * c++ side refactoring done; compiled * remove stale apis * fix bug in DGLGraphCreate; passed test_graph.py * fix bug in python modify; passed utest for pytorch/cpu * fix lint * Add serialization * Add serialization * fix * fix typo * serialize with new ffi * commit * commit * commit * save * save * save * save * commit * clean * Delete tt2.py * fix lint * Add serialization * fix lint 2 * fix lint * fix lint * fix lint * fix lint * Fix Lint * Add serialization * Change to Macro * fix * fix * fix bugs * refactor * refactor * updating dmlc-core to include force flag * trying tempfile * delete leaked pointer * Fix assert * fix assert * add comment and test case * add graph labels * add load labels * lint * lint * add graph labels * lint * fix windows * fix * update dmlc-core to latest * fix * fix camel naming
-
- 08 Sep, 2019 1 commit
-
-
xiang song(charlie.song) authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * Test performance of udf * trigger * Fix doc * Add nn.TGConv and example * Update test code * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test for mxnet TAGCov * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix * Minor opt for URRevel * Delete test code * Update code style and notes. * Fix func name
-
- 07 Sep, 2019 1 commit
-
-
Mufei Li authored
* Update * Update * Update * Update fix * Update * Update * Refactor * Update * Update * Update * Update * Update * Update * Fix style
-
- 30 Aug, 2019 1 commit
-
-
VoVAllen authored
* fix doc * poke ci * poke ci * upd * fix doc * upd * add title for all nn * upd
-
- 28 Aug, 2019 5 commits
-
-
Quan (Andy) Gan authored
* [Conda] Update license * doc fixes
-
Quan (Andy) Gan authored
-
Quan (Andy) Gan authored
-
xiang song(charlie.song) authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc * Add nn.TGConv and example * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix -
Quan (Andy) Gan authored
* initial commit * second commit * another commit * change docstring * migrating to dgl.nn * fixes * docs * lint * multiple fixes * doc
-
- 27 Aug, 2019 1 commit
-
-
Zihao Ye authored
* gat * upd * upd sage * upd * upd * upd * upd * upd * add gmmconv * upd ggnn * upd * upd * upd * upd * add citation examples * add README * fix cheb * improve doc * formula * upd * trigger * lint * lint * upd * add test for transform * add test * check * upd * improve doc * shape check * upd * densechebconv, currently not correct (?) * fix cheb * fix * upd * upd sgc-reddit * upd * trigger
-
- 25 Aug, 2019 1 commit
-
-
Zihao Ye authored
* upd * upd * upd * upd * upd * passed test * add note * upd * trigger * slight change * upd * upd * trigger * fix * simplify * upd * upd * fudge * upd * trigger * test partial * upd * trigger
-