1. 09 May, 2022 1 commit
  2. 17 Mar, 2020 1 commit
    • Chao Ma's avatar
      [DGL-KE] Add license to every file header (#1368) · 635dfb4a
      Chao Ma authored
      * update metis
      
      * update
      
      * update dataloader
      
      * update dataloader
      
      * new script
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update dataloader
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * Add license to every filer header
      635dfb4a
  3. 09 Feb, 2020 1 commit
    • xiang song(charlie.song)'s avatar
      [Optimization][KG] Several optimizations on DGL-KG (#1233) · ffe58983
      xiang song(charlie.song) authored
      * Several optimizations on DGL-KG:
      1. Sorted positive edges for sampling which can reduce random
         memory access during positive sampling
      2. Asynchronous node embedding update
      3. Balanced Relation Partition that gives balanced number of
         edges in each partition. When there is no cross partition
         relation, relation embedding can be pin into GPU memory
      4. tunable neg_sample_size instead of fixed neg_sample_size
      
      * Fix test
      
      * Fix test and eval.py
      
      * Now TransR is OK
      
      * Fix single GPU with mix_cpu_gpu
      
      * Add app tests
      
      * Fix test script
      
      * fix mxnet
      
      * Fix sample
      
      * Add docstrings
      
      * Fix
      
      * Default value for num_workers
      
      * Upd
      
      * upd
      ffe58983
  4. 08 Jan, 2020 1 commit
    • xiang song(charlie.song)'s avatar
      [Feature][KG] Multi-GPU training support for DGL KGE (#1178) · bb6a6476
      xiang song(charlie.song) authored
      * multi-gpu
      
      * Pytorch can run but test has acc problem
      
      * pytorch train/eval can run in multi-gpu
      
      * Fix eval
      
      * Fix
      
      * Fix mxnet
      
      * trigger
      
      * triger
      
      * Fix mxnet score_func
      
      * Fix
      
      * check
      
      * FIx default arg
      
      * Fix train_mxnet mix_cpu_gpu
      
      * Make relation mix_cpu_gpu
      
      * delete some dead code
      
      * some opt for update
      
      * Fix cpu grad update
      bb6a6476
  5. 01 Dec, 2019 1 commit
  6. 14 Nov, 2019 1 commit
    • MilkshakeForReal's avatar
      [Model] add RotatE to dgl-kg (#964) · 8b17a5c1
      MilkshakeForReal authored
      Add RotatE support for KGE (apps/kg)
      Performance Result:
      Dataset FB15k:
      Result from Paper:
      MR: 40
      MRR: 0.797
      HIT@1: 74.6
      HIT@3: 83.0
      HIT@10: 88.4
      
      Our Impl:
      MR: 39.6
      MRR: 0.725
      HIT@1: 62.8
      HIT@3: 80.2
      HIT@10: 87.5
      8b17a5c1
  7. 01 Nov, 2019 1 commit
    • xiang song(charlie.song)'s avatar
      [NN]Supporting TransR in app/kg score_func (#945) · 7f65199a
      xiang song(charlie.song) authored
      * Add TransR for kge
      
      * Now Pytorch TransR can run
      
      * Add MXNet TransR
      
      * Now mxnet can work with small dim size
      
      * Add test
      
      * Pass simple test_score
      
      * Update test with transR score func
      
      * Update RESCAL MXNet
      
      * Add missing funcs
      
      * Update init func for transR score
      
      * Revert "Update init func for transR score"
      
      This reverts commit 0798bb886095e7581f6675da5343376844ce45b9.
      
      * Update score func of TransR MXNet
      
      Make it more memory friendly and faster,
      thourgh it is still very slow and memory consuming
      
      * Update best config
      
      * Fix ramdom seed for test
      
      * Init score-func specific var
      
      * Update Readme
      7f65199a
  8. 12 Oct, 2019 1 commit
  9. 11 Oct, 2019 1 commit
    • xiang song(charlie.song)'s avatar
      [KG] ComplEx score func for MXNet (#918) · bde75256
      xiang song(charlie.song) authored
      * upd
      
      * fig edgebatch edges
      
      * add test
      
      * trigger
      
      * Update README.md for pytorch PinSage example.
      
      Add noting that the PinSage model example under
      example/pytorch/recommendation only work with Python 3.6+
      as its dataset loader depends on stanfordnlp package
      which work only with Python 3.6+.
      
      * Provid a frame agnostic API to test nn modules on both CPU and CUDA side.
      
      1. make dgl.nn.xxx frame agnostic
      2. make test.backend include dgl.nn modules
      3. modify test_edge_softmax of test/mxnet/test_nn.py and
          test/pytorch/test_nn.py work on both CPU and GPU
      
      * Fix style
      
      * Delete unused code
      
      * Make agnostic test only related to tests/backend
      
      1. clear all agnostic related code in dgl.nn
      2. make test_graph_conv agnostic to cpu/gpu
      
      * Fix code style
      
      * fix
      
      * doc
      
      * Make all test code under tests.mxnet/pytorch.test_nn.py
      work on both CPU and GPU.
      
      * Fix syntex
      
      * Remove rand
      
      * Add TAGCN nn.module and example
      
      * Now tagcn can run on CPU.
      
      * Add unitest for TGConv
      
      * Fix style
      
      * For pubmed dataset, using --lr=0.005 can achieve better acc
      
      * Fix style
      
      * Fix some descriptions
      
      * trigger
      
      * Fix doc
      
      * Add nn.TGConv and example
      
      * Fix bug
      
      * Update data in mxnet.tagcn test acc.
      
      * Fix some comments and code
      
      * delete useless code
      
      * Fix namming
      
      * Fix bug
      
      * Fix bug
      
      * Add test for mxnet TAGCov
      
      * Add test code for mxnet TAGCov
      
      * Update some docs
      
      * Fix some code
      
      * Update docs dgl.nn.mxnet
      
      * Update weight init
      
      * Fix
      
      * reproduce the bug
      
      * Fix concurrency bug reported at #755.
      Also make test_shared_mem_store.py more deterministic.
      
      * Update test_shared_mem_store.py
      
      * Update dmlc/core
      
      * Add complEx for mxnet
      
      * ComplEx is ready for MXNet
      bde75256
  10. 04 Oct, 2019 1 commit
  11. 02 Oct, 2019 1 commit
    • Da Zheng's avatar
      [KG][Model] Knowledge graph embeddings (#888) · 15b951d4
      Da Zheng authored
      * upd
      
      * fig edgebatch edges
      
      * add test
      
      * trigger
      
      * Update README.md for pytorch PinSage example.
      
      Add noting that the PinSage model example under
      example/pytorch/recommendation only work with Python 3.6+
      as its dataset loader depends on stanfordnlp package
      which work only with Python 3.6+.
      
      * Provid a frame agnostic API to test nn modules on both CPU and CUDA side.
      
      1. make dgl.nn.xxx frame agnostic
      2. make test.backend include dgl.nn modules
      3. modify test_edge_softmax of test/mxnet/test_nn.py and
          test/pytorch/test_nn.py work on both CPU and GPU
      
      * Fix style
      
      * Delete unused code
      
      * Make agnostic test only related to tests/backend
      
      1. clear all agnostic related code in dgl.nn
      2. make test_graph_conv agnostic to cpu/gpu
      
      * Fix code style
      
      * fix
      
      * doc
      
      * Make all test code under tests.mxnet/pytorch.test_nn.py
      work on both CPU and GPU.
      
      * Fix syntex
      
      * Remove rand
      
      * Add TAGCN nn.module and example
      
      * Now tagcn can run on CPU.
      
      * Add unitest for TGConv
      
      * Fix style
      
      * For pubmed dataset, using --lr=0.005 can achieve better acc
      
      * Fix style
      
      * Fix some descriptions
      
      * trigger
      
      * Fix doc
      
      * Add nn.TGConv and example
      
      * Fix bug
      
      * Update data in mxnet.tagcn test acc.
      
      * Fix some comments and code
      
      * delete useless code
      
      * Fix namming
      
      * Fix bug
      
      * Fix bug
      
      * Add test for mxnet TAGCov
      
      * Add test code for mxnet TAGCov
      
      * Update some docs
      
      * Fix some code
      
      * Update docs dgl.nn.mxnet
      
      * Update weight init
      
      * Fix
      
      * init version.
      
      * change default value of regularization.
      
      * avoid specifying adversarial_temperature
      
      * use default eval_interval.
      
      * remove original model.
      
      * remove optimizer.
      
      * set default value of num_proc
      
      * set default value of log_interval.
      
      * don't need to set neg_sample_size_valid.
      
      * remove unused code.
      
      * use uni_weight by default.
      
      * unify model.
      
      * rename model.
      
      * remove unnecessary data sampler.
      
      * remove the code for checkpoint.
      
      * fix eval.
      
      * raise exception in invalid arguments.
      
      * remove RowAdagrad.
      
      * remove unsupported score function for now.
      
      * Fix bugs of kg
      Update README
      
      * Update Readme for mxnet distmult
      
      * Update README.md
      
      * Update README.md
      
      * revert changes on dmlc
      
      * add tests.
      
      * update CI.
      
      * add tests script.
      
      * reorder tests in CI.
      
      * measure performance.
      
      * add results on wn18
      
      * remove some code.
      
      * rename the training script.
      
      * new results on TransE.
      
      * remove --train.
      
      * add format.
      
      * fix.
      
      * use EdgeSubgraph.
      
      * create PBGNegEdgeSubgraph to simplify the code.
      
      * fix test
      
      * fix CI.
      
      * run nose for unit tests.
      
      * remove unused code in dataset.
      
      * change argument to save embeddings.
      
      * test training and eval scripts in CI.
      
      * check Pytorch version.
      
      * fix a minor problem in config.
      
      * fix a minor bug.
      
      * fix readme.
      
      * Update README.md
      
      * Update README.md
      
      * Update README.md
      15b951d4