- 04 Jan, 2020 1 commit
-
-
Da Zheng authored
* remove parallel sampling for multiprocessing. * avoid memory copy in eval. * remove print.
-
- 03 Jan, 2020 1 commit
-
-
Da Zheng authored
* add no_eval_filter * fix eval.
-
- 02 Jan, 2020 1 commit
-
-
Da Zheng authored
-
- 20 Dec, 2019 1 commit
-
-
VoVAllen authored
* tf * add builtin support * fiix * pytest * fix * fix * fix some bugs * fix selecting * fix todo * fix test * fix test fail in tf * fix * fix * fix gather row * fix gather row * log backend * fix gather row * fix gather row * fix for pytorch * fix * fix * fix * fix * fix * fix tests * fix * fix * fix * fix * fix * fix * fix convert * fix * fix * fix * fix inplace * add alignment setting * add debug option * Revert "add alignment setting" This reverts commit ec63fb3506ea84fff7d447a1fbdfd1d5d1fb6110. * tf ci * fix lint * fix lint * add tfdlpack * fix type * add env * fix backend * fix * fix tests * remove one_hot * remove comment * remove comment * fix * use pip to install all * fix test * fix base * fix * fix * add skip * upgrade cmake * change version * change ci * fix * fix * fix * fix * fix seg fault * fix * fix python version * fix * try fix * fix * fix * tf takes longer time in ci * change py version * fix * fix * fix oom * change kg env * change kg env * 啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊 * 我再也不搞各种乱七八糟环境了…… * use pytest * Chang image
-
- 13 Dec, 2019 1 commit
-
-
Da Zheng authored
-
- 11 Oct, 2019 1 commit
-
-
xiang song(charlie.song) authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc * Add nn.TGConv and example * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test for mxnet TAGCov * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix * reproduce the bug * Fix concurrency bug reported at #755. Also make test_shared_mem_store.py more deterministic. * Update test_shared_mem_store.py * Update dmlc/core * Update Knowledge Graph CI with new Docker image * Remove unused line_profierx * Poke Jenkins * Update test with exit code check and simplify docker * Update Jenkinsfile to make app test a standalone stage * Update kg_test * Update Jenkinsfile * Make some KG test parallel * Update * KG MXNet does not support ComplEx * Update Jenkinsfile * Update Jenkins file * Change torch-1.2 to torch-1.2-cu92 * ci * Update ubuntu_install_mxnet_cpu.sh * Update ubuntu_install_mxnet_gpu.sh * We only need to test train and eval script. Delete some test code
-
- 03 Oct, 2019 1 commit
-
-
Da Zheng authored
-
- 02 Oct, 2019 1 commit
-
-
Da Zheng authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc * Add nn.TGConv and example * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test for mxnet TAGCov * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix * init version. * change default value of regularization. * avoid specifying adversarial_temperature * use default eval_interval. * remove original model. * remove optimizer. * set default value of num_proc * set default value of log_interval. * don't need to set neg_sample_size_valid. * remove unused code. * use uni_weight by default. * unify model. * rename model. * remove unnecessary data sampler. * remove the code for checkpoint. * fix eval. * raise exception in invalid arguments. * remove RowAdagrad. * remove unsupported score function for now. * Fix bugs of kg Update README * Update Readme for mxnet distmult * Update README.md * Update README.md * revert changes on dmlc * add tests. * update CI. * add tests script. * reorder tests in CI. * measure performance. * add results on wn18 * remove some code. * rename the training script. * new results on TransE. * remove --train. * add format. * fix. * use EdgeSubgraph. * create PBGNegEdgeSubgraph to simplify the code. * fix test * fix CI. * run nose for unit tests. * remove unused code in dataset. * change argument to save embeddings. * test training and eval scripts in CI. * check Pytorch version. * fix a minor problem in config. * fix a minor bug. * fix readme. * Update README.md * Update README.md * Update README.md
-