- 02 Oct, 2019 1 commit
-
-
Da Zheng authored
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc * Add nn.TGConv and example * Fix bug * Update data in mxnet.tagcn test acc. * Fix some comments and code * delete useless code * Fix namming * Fix bug * Fix bug * Add test for mxnet TAGCov * Add test code for mxnet TAGCov * Update some docs * Fix some code * Update docs dgl.nn.mxnet * Update weight init * Fix * init version. * change default value of regularization. * avoid specifying adversarial_temperature * use default eval_interval. * remove original model. * remove optimizer. * set default value of num_proc * set default value of log_interval. * don't need to set neg_sample_size_valid. * remove unused code. * use uni_weight by default. * unify model. * rename model. * remove unnecessary data sampler. * remove the code for checkpoint. * fix eval. * raise exception in invalid arguments. * remove RowAdagrad. * remove unsupported score function for now. * Fix bugs of kg Update README * Update Readme for mxnet distmult * Update README.md * Update README.md * revert changes on dmlc * add tests. * update CI. * add tests script. * reorder tests in CI. * measure performance. * add results on wn18 * remove some code. * rename the training script. * new results on TransE. * remove --train. * add format. * fix. * use EdgeSubgraph. * create PBGNegEdgeSubgraph to simplify the code. * fix test * fix CI. * run nose for unit tests. * remove unused code in dataset. * change argument to save embeddings. * test training and eval scripts in CI. * check Pytorch version. * fix a minor problem in config. * fix a minor bug. * fix readme. * Update README.md * Update README.md * Update README.md
-