Unverified Commit fcf5ad5f authored by Mufei Li's avatar Mufei Li Committed by GitHub
Browse files

[Utils] Node homophily measure (#5376)



* Update

* lint

* lint

* r prefix

* CI

* lint

* skip TF

* Update

---------
Co-authored-by: default avatarUbuntu <ubuntu@ip-172-31-36-188.ap-northeast-1.compute.internal>
parent 5ffd2a02
......@@ -204,6 +204,16 @@ set at each iteration. ``prop_edges_YYY`` applies traversal algorithm ``YYY`` an
prop_edges
prop_edges_dfs
Homophily Measures
-------------------------
Utilities for measuring homophily of a graph
.. autosummary::
:toctree: ../../generated/
node_homophily
Utilities
-----------------------------------------------
......
......@@ -51,6 +51,7 @@ from .heterograph import ( # pylint: disable=reimported
DGLGraph,
DGLGraph as DGLHeteroGraph,
)
from .homophily import *
from .merge import *
from .subgraph import *
from .traversal import *
......
"""Utils for tacking graph homophily and heterophily"""
from . import backend as F, function as fn
__all__ = ["node_homophily"]
def node_homophily(graph, y):
r"""Homophily measure from `Geom-GCN: Geometric Graph Convolutional Networks
<https://arxiv.org/abs/2002.05287>`__
We follow the practice of a later paper `Large Scale Learning on
Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
<https://arxiv.org/abs/2110.14446>`__ to call it node homophily.
Mathematically it is defined as follows:
.. math::
\frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \frac{ | \{ (u,v) : u
\in \mathcal{N}(v) \wedge y_v = y_u \} | } { |\mathcal{N}(v)| }
where :math:`\mathcal{V}` is the set of nodes, :math:`\mathcal{N}(v)` is
the predecessors of node :math:`v`, and :math:`y_v` is the class of node
:math:`v`.
Parameters
----------
graph : DGLGraph
The graph
y : Tensor
The node labels, which is a tensor of shape (|V|)
Returns
-------
float
The node homophily value
Examples
--------
>>> import dgl
>>> import torch
>>> graph = dgl.graph(([1, 2, 0, 4], [0, 1, 2, 3]))
>>> y = torch.tensor([0, 0, 0, 0, 1])
>>> dgl.node_homophily(graph, y)
0.6000000238418579
"""
with graph.local_scope():
src, dst = graph.edges()
# Handle the case where graph is of dtype int32.
src = F.astype(src, F.int64)
dst = F.astype(dst, F.int64)
# Compute y_v = y_u for all edges.
graph.edata["same_class"] = F.astype(y[src] == y[dst], F.float32)
graph.update_all(
fn.copy_e("same_class", "m"), fn.mean("m", "node_value")
)
return graph.ndata["node_value"].mean().item()
import unittest
import backend as F
import dgl
from test_utils import parametrize_idtype
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="Skip TF")
@parametrize_idtype
def test_node_homophily(idtype):
# IfChangeThenChange: python/dgl/homophily.py
# Update the docstring example.
device = F.ctx()
graph = dgl.graph(
([1, 2, 0, 4], [0, 1, 2, 3]), idtype=idtype, device=device
)
y = F.tensor([0, 0, 0, 0, 1])
assert dgl.node_homophily(graph, y) == 0.6000000238418579
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment