Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
e5b92d2b
Unverified
Commit
e5b92d2b
authored
Apr 06, 2024
by
Muhammed Fatih BALIN
Committed by
GitHub
Apr 06, 2024
Browse files
[GraphBolt][CUDA] Remove overlap graph variable hacks. (#7263)
parent
d4a6f8a0
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
38 additions
and
8 deletions
+38
-8
python/dgl/graphbolt/impl/fused_csc_sampling_graph.py
python/dgl/graphbolt/impl/fused_csc_sampling_graph.py
+33
-4
python/dgl/graphbolt/impl/neighbor_sampler.py
python/dgl/graphbolt/impl/neighbor_sampler.py
+5
-4
No files found.
python/dgl/graphbolt/impl/fused_csc_sampling_graph.py
View file @
e5b92d2b
...
@@ -290,6 +290,35 @@ class FusedCSCSamplingGraph(SamplingGraph):
...
@@ -290,6 +290,35 @@ class FusedCSCSamplingGraph(SamplingGraph):
self
.
_c_csc_graph
.
set_node_type_offset
(
node_type_offset
)
self
.
_c_csc_graph
.
set_node_type_offset
(
node_type_offset
)
self
.
_node_type_offset_cached_list
=
None
self
.
_node_type_offset_cached_list
=
None
@
property
def
_indptr_node_type_offset_list
(
self
)
->
Optional
[
list
]:
"""Returns the indptr node type offset list which presents the column id
space when it does not match the global id space. It is useful when we
slice a subgraph from another FusedCSCSamplingGraph.
Returns
-------
list or None
If present, returns a 1D integer list of shape
`(num_node_types + 1,)`. The list is in ascending order as nodes
of the same type have continuous IDs, and larger node IDs are
paired with larger node type IDs. The first value is 0 and last
value is the number of nodes. And nodes with IDs between
`node_type_offset_[i]~node_type_offset_[i+1]` are of type id 'i'.
"""
return
(
self
.
_indptr_node_type_offset_list_
if
hasattr
(
self
,
"_indptr_node_type_offset_list_"
)
else
None
)
@
_indptr_node_type_offset_list
.
setter
def
_indptr_node_type_offset_list
(
self
,
indptr_node_type_offset_list
:
Optional
[
torch
.
Tensor
]
):
"""Sets the indptr node type offset list if present."""
self
.
_indptr_node_type_offset_list_
=
indptr_node_type_offset_list
@
property
@
property
def
type_per_edge
(
self
)
->
Optional
[
torch
.
Tensor
]:
def
type_per_edge
(
self
)
->
Optional
[
torch
.
Tensor
]:
"""Returns the edge type tensor if present.
"""Returns the edge type tensor if present.
...
@@ -665,8 +694,8 @@ class FusedCSCSamplingGraph(SamplingGraph):
...
@@ -665,8 +694,8 @@ class FusedCSCSamplingGraph(SamplingGraph):
seed_offsets
=
None
seed_offsets
=
None
if
isinstance
(
seeds
,
dict
):
if
isinstance
(
seeds
,
dict
):
seeds
,
seed_offsets
=
self
.
_convert_to_homogeneous_nodes
(
seeds
)
seeds
,
seed_offsets
=
self
.
_convert_to_homogeneous_nodes
(
seeds
)
elif
seeds
is
None
and
hasattr
(
self
,
"_seed_offset_list"
)
:
elif
seeds
is
None
:
seed_offsets
=
self
.
_
seed_offset_list
# pylint: disable=no-member
seed_offsets
=
self
.
_
indptr_node_type_offset_list
C_sampled_subgraph
=
self
.
_sample_neighbors
(
C_sampled_subgraph
=
self
.
_sample_neighbors
(
seeds
,
seeds
,
seed_offsets
,
seed_offsets
,
...
@@ -914,8 +943,8 @@ class FusedCSCSamplingGraph(SamplingGraph):
...
@@ -914,8 +943,8 @@ class FusedCSCSamplingGraph(SamplingGraph):
seed_offsets
=
None
seed_offsets
=
None
if
isinstance
(
seeds
,
dict
):
if
isinstance
(
seeds
,
dict
):
seeds
,
seed_offsets
=
self
.
_convert_to_homogeneous_nodes
(
seeds
)
seeds
,
seed_offsets
=
self
.
_convert_to_homogeneous_nodes
(
seeds
)
elif
seeds
is
None
and
hasattr
(
self
,
"_seed_offset_list"
)
:
elif
seeds
is
None
:
seed_offsets
=
self
.
_
seed_offset_list
# pylint: disable=no-member
seed_offsets
=
self
.
_
indptr_node_type_offset_list
self
.
_check_sampler_arguments
(
seeds
,
fanouts
,
probs_name
)
self
.
_check_sampler_arguments
(
seeds
,
fanouts
,
probs_name
)
C_sampled_subgraph
=
self
.
_c_csc_graph
.
sample_neighbors
(
C_sampled_subgraph
=
self
.
_c_csc_graph
.
sample_neighbors
(
seeds
,
seeds
,
...
...
python/dgl/graphbolt/impl/neighbor_sampler.py
View file @
e5b92d2b
...
@@ -102,9 +102,9 @@ class FetchInsubgraphData(Mapper):
...
@@ -102,9 +102,9 @@ class FetchInsubgraphData(Mapper):
)
)
if
self
.
prob_name
is
not
None
and
probs_or_mask
is
not
None
:
if
self
.
prob_name
is
not
None
and
probs_or_mask
is
not
None
:
subgraph
.
edge_attributes
=
{
self
.
prob_name
:
probs_or_mask
}
subgraph
.
edge_attributes
=
{
self
.
prob_name
:
probs_or_mask
}
subgraph
.
_seed_offset_list
=
seed_offsets
minibatch
.
sampled_subgraphs
.
insert
(
0
,
subgraph
)
subgraph
.
_indptr_node_type_offset_list
=
seed_offsets
minibatch
.
_sliced_sampling_graph
=
subgraph
if
self
.
stream
is
not
None
:
if
self
.
stream
is
not
None
:
minibatch
.
wait
=
torch
.
cuda
.
current_stream
().
record_event
().
wait
minibatch
.
wait
=
torch
.
cuda
.
current_stream
().
record_event
().
wait
...
@@ -133,7 +133,8 @@ class SamplePerLayerFromFetchedSubgraph(MiniBatchTransformer):
...
@@ -133,7 +133,8 @@ class SamplePerLayerFromFetchedSubgraph(MiniBatchTransformer):
self
.
prob_name
=
sample_per_layer_obj
.
prob_name
self
.
prob_name
=
sample_per_layer_obj
.
prob_name
def
_sample_per_layer_from_fetched_subgraph
(
self
,
minibatch
):
def
_sample_per_layer_from_fetched_subgraph
(
self
,
minibatch
):
subgraph
=
minibatch
.
sampled_subgraphs
[
0
]
subgraph
=
minibatch
.
_sliced_sampling_graph
delattr
(
minibatch
,
"_sliced_sampling_graph"
)
kwargs
=
{
kwargs
=
{
key
[
1
:]:
getattr
(
minibatch
,
key
)
key
[
1
:]:
getattr
(
minibatch
,
key
)
for
key
in
[
"_random_seed"
,
"_seed2_contribution"
]
for
key
in
[
"_random_seed"
,
"_seed2_contribution"
]
...
@@ -146,7 +147,7 @@ class SamplePerLayerFromFetchedSubgraph(MiniBatchTransformer):
...
@@ -146,7 +147,7 @@ class SamplePerLayerFromFetchedSubgraph(MiniBatchTransformer):
self
.
prob_name
,
self
.
prob_name
,
**
kwargs
,
**
kwargs
,
)
)
minibatch
.
sampled_subgraphs
[
0
]
=
sampled_subgraph
minibatch
.
sampled_subgraphs
.
insert
(
0
,
sampled_subgraph
)
return
minibatch
return
minibatch
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment