Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
dba36c87
Unverified
Commit
dba36c87
authored
Dec 16, 2018
by
Da Zheng
Committed by
GitHub
Dec 16, 2018
Browse files
Fix some minor problems in SSE (#309)
* fix SSE. * fix. * fix.
parent
0d0f4436
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
20 additions
and
14 deletions
+20
-14
examples/mxnet/sse/README.md
examples/mxnet/sse/README.md
+4
-3
examples/mxnet/sse/sse_batch.py
examples/mxnet/sse/sse_batch.py
+16
-11
No files found.
examples/mxnet/sse/README.md
View file @
dba36c87
...
...
@@ -25,10 +25,11 @@ Test convergence
```
bash
DGLBACKEND
=
mxnet python3 sse_batch.py
--dataset
"pubmed"
\
--n-epochs
100
\
--n-epochs
100
0
\
--lr
0.001
\
--batch-size
1024
\
--batch-size
30
\
--dgl
\
--use-spmv
\
--neigh-expand
4
--neigh-expand
8
\
--n-hidden
16
```
examples/mxnet/sse/sse_batch.py
View file @
dba36c87
...
...
@@ -200,9 +200,14 @@ def main(args, data):
labels
=
data
.
labels
else
:
labels
=
mx
.
nd
.
array
(
data
.
labels
)
train_size
=
len
(
labels
)
*
args
.
train_percent
train_vs
=
mx
.
nd
.
arange
(
0
,
train_size
,
dtype
=
'int64'
)
eval_vs
=
mx
.
nd
.
arange
(
train_size
,
len
(
labels
),
dtype
=
'int64'
)
if
data
.
train_mask
is
not
None
:
train_vs
=
mx
.
nd
.
array
(
np
.
nonzero
(
data
.
train_mask
)[
0
],
dtype
=
'int64'
)
eval_vs
=
mx
.
nd
.
array
(
np
.
nonzero
(
data
.
train_mask
==
0
)[
0
],
dtype
=
'int64'
)
else
:
train_size
=
len
(
labels
)
*
args
.
train_percent
train_vs
=
mx
.
nd
.
arange
(
0
,
train_size
,
dtype
=
'int64'
)
eval_vs
=
mx
.
nd
.
arange
(
train_size
,
len
(
labels
),
dtype
=
'int64'
)
print
(
"train size: "
+
str
(
len
(
train_vs
)))
print
(
"eval size: "
+
str
(
len
(
eval_vs
)))
eval_labels
=
mx
.
nd
.
take
(
labels
,
eval_vs
)
...
...
@@ -305,9 +310,6 @@ def main(args, data):
+
" subgraphs takes "
+
str
(
end1
-
start1
))
start1
=
end1
if
i
>
num_batches
/
3
:
break
if
args
.
cache_subgraph
:
sampler
.
restart
()
else
:
...
...
@@ -317,10 +319,12 @@ def main(args, data):
seed_nodes
=
train_vs
,
shuffle
=
True
,
return_seed_id
=
True
)
#
prediction.
#
test set accuracy
logits
=
model_infer
(
g
,
eval_vs
)
eval_loss
=
mx
.
nd
.
softmax_cross_entropy
(
logits
,
eval_labels
)
eval_loss
=
eval_loss
.
asnumpy
()[
0
]
y_bar
=
mx
.
nd
.
argmax
(
logits
,
axis
=
1
)
y
=
eval_labels
accuracy
=
mx
.
nd
.
sum
(
y_bar
==
y
)
/
len
(
y
)
accuracy
=
accuracy
.
asnumpy
()[
0
]
# update the inference model.
infer_params
=
model_infer
.
collect_params
()
...
...
@@ -334,8 +338,8 @@ def main(args, data):
rets
.
append
(
all_hidden
)
dur
.
append
(
time
.
time
()
-
t0
)
print
(
"Epoch {:05d} | Train Loss {:.4f} |
Eval Loss
{:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}"
.
format
(
epoch
,
train_loss
,
eval_loss
,
np
.
mean
(
dur
),
n_edges
/
np
.
mean
(
dur
)
/
1000
))
print
(
"Epoch {:05d} | Train Loss {:.4f} |
Test Accuracy
{:.4f} | Time(s) {:.4f} | ETputs(KTEPS) {:.2f}"
.
format
(
epoch
,
train_loss
,
accuracy
,
np
.
mean
(
dur
),
n_edges
/
np
.
mean
(
dur
)
/
1000
))
return
rets
...
...
@@ -361,6 +365,7 @@ class GraphData:
self
.
graph
=
MXNetGraph
(
csr
)
self
.
features
=
mx
.
nd
.
random
.
normal
(
shape
=
(
csr
.
shape
[
0
],
num_feats
))
self
.
labels
=
mx
.
nd
.
floor
(
mx
.
nd
.
random
.
uniform
(
low
=
0
,
high
=
10
,
shape
=
(
csr
.
shape
[
0
])))
self
.
train_mask
=
None
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
description
=
'GCN'
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment