Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
cb2c4ec1
Unverified
Commit
cb2c4ec1
authored
Aug 02, 2020
by
xiang song(charlie.song)
Committed by
GitHub
Aug 02, 2020
Browse files
Fix (#1909)
Co-authored-by:
Ubuntu
<
ubuntu@ip-172-31-51-214.ec2.internal
>
parent
56bbf9cb
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
13 additions
and
15 deletions
+13
-15
python/dgl/data/knowledge_graph.py
python/dgl/data/knowledge_graph.py
+13
-15
No files found.
python/dgl/data/knowledge_graph.py
View file @
cb2c4ec1
...
@@ -13,8 +13,6 @@ from .utils import generate_mask_tensor
...
@@ -13,8 +13,6 @@ from .utils import generate_mask_tensor
from
.utils
import
deprecate_property
,
deprecate_function
from
.utils
import
deprecate_property
,
deprecate_function
from
..utils
import
retry_method_with_fix
from
..utils
import
retry_method_with_fix
from
..
import
backend
as
F
from
..
import
backend
as
F
from
..graph
import
DGLGraph
from
..graph
import
batch
as
graph_batch
from
..convert
import
graph
as
dgl_graph
from
..convert
import
graph
as
dgl_graph
class
KnowledgeGraphDataset
(
DGLBuiltinDataset
):
class
KnowledgeGraphDataset
(
DGLBuiltinDataset
):
...
@@ -140,34 +138,34 @@ class KnowledgeGraphDataset(DGLBuiltinDataset):
...
@@ -140,34 +138,34 @@ class KnowledgeGraphDataset(DGLBuiltinDataset):
self
.
_num_nodes
=
info
[
'num_nodes'
]
self
.
_num_nodes
=
info
[
'num_nodes'
]
self
.
_num_rels
=
info
[
'num_rels'
]
self
.
_num_rels
=
info
[
'num_rels'
]
self
.
_g
=
graphs
[
0
]
self
.
_g
=
graphs
[
0
]
train_mask
=
self
.
_g
.
edata
[
'train_mask'
].
numpy
()
train_mask
=
self
.
_g
.
edata
[
'train_
edge_
mask'
].
numpy
()
val_mask
=
self
.
_g
.
edata
[
'val_mask'
].
numpy
()
val_mask
=
self
.
_g
.
edata
[
'val
id_edge
_mask'
].
numpy
()
test_mask
=
self
.
_g
.
edata
[
'test_mask'
].
numpy
()
test_mask
=
self
.
_g
.
edata
[
'test_
edge_
mask'
].
numpy
()
# convert mask tensor into bool tensor if possible
# convert mask tensor into bool tensor if possible
self
.
_g
.
n
data
[
'train_edge_mask'
]
=
generate_mask_tensor
(
self
.
_g
.
n
data
[
'train_edge_mask'
].
numpy
())
self
.
_g
.
e
data
[
'train_edge_mask'
]
=
generate_mask_tensor
(
self
.
_g
.
e
data
[
'train_edge_mask'
].
numpy
())
self
.
_g
.
n
data
[
'valid_edge_mask'
]
=
generate_mask_tensor
(
self
.
_g
.
n
data
[
'valid_edge_mask'
].
numpy
())
self
.
_g
.
e
data
[
'valid_edge_mask'
]
=
generate_mask_tensor
(
self
.
_g
.
e
data
[
'valid_edge_mask'
].
numpy
())
self
.
_g
.
n
data
[
'test_edge_mask'
]
=
generate_mask_tensor
(
self
.
_g
.
n
data
[
'test_edge_mask'
].
numpy
())
self
.
_g
.
e
data
[
'test_edge_mask'
]
=
generate_mask_tensor
(
self
.
_g
.
e
data
[
'test_edge_mask'
].
numpy
())
self
.
_g
.
n
data
[
'train_mask'
]
=
generate_mask_tensor
(
train_mask
)
self
.
_g
.
e
data
[
'train_mask'
]
=
generate_mask_tensor
(
self
.
_g
.
edata
[
'train_mask'
].
numpy
()
)
self
.
_g
.
n
data
[
'val_mask'
]
=
generate_mask_tensor
(
val_mask
)
self
.
_g
.
e
data
[
'val_mask'
]
=
generate_mask_tensor
(
self
.
_g
.
edata
[
'val_mask'
].
numpy
()
)
self
.
_g
.
n
data
[
'test_mask'
]
=
generate_mask_tensor
(
test_mask
)
self
.
_g
.
e
data
[
'test_mask'
]
=
generate_mask_tensor
(
self
.
_g
.
edata
[
'test_mask'
].
numpy
()
)
# for compatability (with 0.4.x) generate train_idx, valid_idx and test_idx
# for compatability (with 0.4.x) generate train_idx, valid_idx and test_idx
etype
=
self
.
g
.
edata
[
'etype'
].
numpy
()
etype
=
self
.
_
g
.
edata
[
'etype'
].
numpy
()
self
.
_etype
=
etype
self
.
_etype
=
etype
u
,
v
=
self
.
_g
.
all_edges
(
form
=
'uv'
)
u
,
v
=
self
.
_g
.
all_edges
(
form
=
'uv'
)
u
=
u
.
numpy
()
u
=
u
.
numpy
()
v
=
v
.
numpy
()
v
=
v
.
numpy
()
train_idx
=
np
.
nonzero
(
train_mask
==
1
)
train_idx
=
np
.
nonzero
(
train_mask
==
1
)
self
.
_train
=
np
.
column_stack
((
u
[
train_idx
],
etype
[
train_idx
],
v
[
train_idx
]))
self
.
_train
=
np
.
column_stack
((
u
[
train_idx
],
etype
[
train_idx
],
v
[
train_idx
]))
valid_idx
=
np
.
nonzero
(
val
id
_mask
==
1
)
valid_idx
=
np
.
nonzero
(
val_mask
==
1
)
self
.
_valid
=
np
.
column_stack
((
u
[
valid_idx
],
etype
[
valid_idx
],
v
[
valid_idx
]))
self
.
_valid
=
np
.
column_stack
((
u
[
valid_idx
],
etype
[
valid_idx
],
v
[
valid_idx
]))
test_idx
=
np
.
nonzero
(
test_mask
==
1
)
test_idx
=
np
.
nonzero
(
test_mask
==
1
)
self
.
_test
=
np
.
column_stack
((
u
[
test_idx
],
etype
[
test_idx
],
v
[
test_idx
]))
self
.
_test
=
np
.
column_stack
((
u
[
test_idx
],
etype
[
test_idx
],
v
[
test_idx
]))
if
self
.
verbose
:
if
self
.
verbose
:
print
(
"# entities: {}"
.
format
(
num_nodes
))
print
(
"# entities: {}"
.
format
(
self
.
num_nodes
))
print
(
"# relations: {}"
.
format
(
num_rels
))
print
(
"# relations: {}"
.
format
(
self
.
num_rels
))
print
(
"# training edges: {}"
.
format
(
len
(
train_idx
)))
print
(
"# training edges: {}"
.
format
(
len
(
train_idx
)))
print
(
"# validation edges: {}"
.
format
(
len
(
valid_idx
)))
print
(
"# validation edges: {}"
.
format
(
len
(
valid_idx
)))
print
(
"# testing edges: {}"
.
format
(
len
(
test_idx
)))
print
(
"# testing edges: {}"
.
format
(
len
(
test_idx
)))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment