Unverified Commit c53deb26 authored by Mufei Li's avatar Mufei Li Committed by GitHub
Browse files

[Sparse] APPNP example (#4919)



* Update

* Update

* Update

* Update
Co-authored-by: default avatarUbuntu <ubuntu@ip-172-31-36-188.ap-northeast-1.compute.internal>
parent 61fa6401
"""
[Predict then Propagate: Graph Neural Networks meet Personalized PageRank]
(https://arxiv.org/abs/1810.05997)
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.data import CoraGraphDataset
from dgl.mock_sparse import create_from_coo, diag, identity
from torch.optim import Adam
class APPNP(nn.Module):
def __init__(
self,
in_size,
out_size,
hidden_size=64,
dropout=0.1,
num_hops=10,
alpha=0.1,
):
super().__init__()
self.f_theta = nn.Sequential(
nn.Dropout(dropout),
nn.Linear(in_size, hidden_size),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_size, out_size),
)
self.num_hops = num_hops
self.A_dropout = nn.Dropout(dropout)
self.alpha = alpha
def forward(self, A_hat, X):
A_val_0 = A_hat.val
Z_0 = Z = self.f_theta(X)
for _ in range(self.num_hops):
A_hat.val = self.A_dropout(A_val_0)
Z = (1 - self.alpha) * A_hat @ Z + self.alpha * Z_0
# Reset A_hat.val to avoid value corruption.
A_hat.val = A_val_0
return Z
def evaluate(g, pred):
label = g.ndata["label"]
val_mask = g.ndata["val_mask"]
test_mask = g.ndata["test_mask"]
# Compute accuracy on validation/test set.
val_acc = (pred[val_mask] == label[val_mask]).float().mean()
test_acc = (pred[test_mask] == label[test_mask]).float().mean()
return val_acc, test_acc
def train(g, A_hat, X, model):
label = g.ndata["label"]
train_mask = g.ndata["train_mask"]
optimizer = Adam(model.parameters(), lr=1e-2, weight_decay=5e-4)
for epoch in range(50):
# Forward.
model.train()
logits = model(A_hat, X)
# Compute loss with nodes in training set.
loss = F.cross_entropy(logits[train_mask], label[train_mask])
# Backward.
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Compute prediction.
model.eval()
logits = model(A_hat, X)
pred = logits.argmax(dim=1)
# Evaluate the prediction.
val_acc, test_acc = evaluate(g, pred)
print(
f"In epoch {epoch}, loss: {loss:.3f}, val acc: {val_acc:.3f}, test"
f" acc: {test_acc:.3f}"
)
if __name__ == "__main__":
# If CUDA is available, use GPU to accelerate the training, use CPU
# otherwise.
dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load graph from the existing dataset.
dataset = CoraGraphDataset()
g = dataset[0].to(dev)
# Create the sparse adjacency matrix A.
src, dst = g.edges()
N = g.num_nodes()
A = create_from_coo(dst, src, shape=(N, N))
# Calculate the symmetrically normalized adjacency matrix.
I = identity(A.shape, device=dev)
A_hat = A + I
D_hat = diag(A_hat.sum(dim=1)) ** -0.5
A_hat = D_hat @ A_hat @ D_hat
# Create APPNP model.
X = g.ndata["feat"]
in_size = X.shape[1]
out_size = dataset.num_classes
model = APPNP(in_size, out_size).to(dev)
# Kick off training.
train(g, A_hat, X, model)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment