Unverified Commit b20455a2 authored by Rhett Ying's avatar Rhett Ying Committed by GitHub
Browse files

[GraphBolt] move to_dgl() for tutorial notebooks (#6727)

parent ffe2871b
...@@ -4,9 +4,7 @@ ...@@ -4,9 +4,7 @@
"metadata": { "metadata": {
"colab": { "colab": {
"private_outputs": true, "private_outputs": true,
"provenance": [], "provenance": []
"authorship_tag": "ABX9TyOjqI7Q6kAUIF+Fhf3q8KUM",
"include_colab_link": true
}, },
"kernelspec": { "kernelspec": {
"name": "python3", "name": "python3",
...@@ -143,7 +141,6 @@ ...@@ -143,7 +141,6 @@
"datapipe = datapipe.sample_uniform_negative(graph, 5)\n", "datapipe = datapipe.sample_uniform_negative(graph, 5)\n",
"datapipe = datapipe.sample_neighbor(graph, [5, 5, 5])\n", "datapipe = datapipe.sample_neighbor(graph, [5, 5, 5])\n",
"datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n", "datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n",
"datapipe = datapipe.to_dgl()\n",
"datapipe = datapipe.copy_to(device)\n", "datapipe = datapipe.copy_to(device)\n",
"train_dataloader = gb.DataLoader(datapipe, num_workers=0)" "train_dataloader = gb.DataLoader(datapipe, num_workers=0)"
], ],
...@@ -167,7 +164,7 @@ ...@@ -167,7 +164,7 @@
"cell_type": "code", "cell_type": "code",
"source": [ "source": [
"data = next(iter(train_dataloader))\n", "data = next(iter(train_dataloader))\n",
"print(f\"DGLMiniBatch: {data}\")" "print(f\"MiniBatch: {data}\")"
], ],
"metadata": { "metadata": {
"id": "euEdzmerYmZi" "id": "euEdzmerYmZi"
...@@ -175,6 +172,27 @@ ...@@ -175,6 +172,27 @@
"execution_count": null, "execution_count": null,
"outputs": [] "outputs": []
}, },
{
"cell_type": "markdown",
"source": [
"In order to train with DGL, you need to convert `MiniBatch` to `DGLMiniBatch` like below:"
],
"metadata": {
"id": "IpAgrEp_cdEP"
}
},
{
"cell_type": "code",
"source": [
"data = data.to_dgl()\n",
"print(f\"DGLMiniBatch: {data}\")"
],
"metadata": {
"id": "KQgxFUyCcjVT"
},
"execution_count": null,
"outputs": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"source": [ "source": [
...@@ -295,7 +313,10 @@ ...@@ -295,7 +313,10 @@
" model.train()\n", " model.train()\n",
" total_loss = 0\n", " total_loss = 0\n",
" for step, data in tqdm.tqdm(enumerate(train_dataloader)):\n", " for step, data in tqdm.tqdm(enumerate(train_dataloader)):\n",
" # Unpack MiniBatch.\n", " # Convert to DGL format.\n",
" data = data.to_dgl()\n",
"\n",
" # Unpack DGLMiniBatch.\n",
" compacted_pairs, labels = to_binary_link_dgl_computing_pack(data)\n", " compacted_pairs, labels = to_binary_link_dgl_computing_pack(data)\n",
" node_feature = data.node_features[\"feat\"]\n", " node_feature = data.node_features[\"feat\"]\n",
" # Convert sampled subgraphs to DGL blocks.\n", " # Convert sampled subgraphs to DGL blocks.\n",
...@@ -342,13 +363,15 @@ ...@@ -342,13 +363,15 @@
"# to -1.\n", "# to -1.\n",
"datapipe = datapipe.sample_neighbor(graph, [-1, -1])\n", "datapipe = datapipe.sample_neighbor(graph, [-1, -1])\n",
"datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n", "datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n",
"datapipe = datapipe.to_dgl()\n",
"datapipe = datapipe.copy_to(device)\n", "datapipe = datapipe.copy_to(device)\n",
"eval_dataloader = gb.DataLoader(datapipe, num_workers=0)\n", "eval_dataloader = gb.DataLoader(datapipe, num_workers=0)\n",
"\n", "\n",
"logits = []\n", "logits = []\n",
"labels = []\n", "labels = []\n",
"for step, data in enumerate(eval_dataloader):\n", "for step, data in enumerate(eval_dataloader):\n",
" # Convert to DGL format.\n",
" data = data.to_dgl()\n",
"\n",
" # Unpack MiniBatch.\n", " # Unpack MiniBatch.\n",
" compacted_pairs, label = to_binary_link_dgl_computing_pack(data)\n", " compacted_pairs, label = to_binary_link_dgl_computing_pack(data)\n",
"\n", "\n",
...@@ -393,4 +416,4 @@ ...@@ -393,4 +416,4 @@
} }
} }
] ]
} }
\ No newline at end of file
...@@ -152,7 +152,6 @@ ...@@ -152,7 +152,6 @@
"datapipe = gb.ItemSampler(train_set, batch_size=1024, shuffle=True)\n", "datapipe = gb.ItemSampler(train_set, batch_size=1024, shuffle=True)\n",
"datapipe = datapipe.sample_neighbor(graph, [4, 4])\n", "datapipe = datapipe.sample_neighbor(graph, [4, 4])\n",
"datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n", "datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n",
"datapipe = datapipe.to_dgl()\n",
"datapipe = datapipe.copy_to(device)\n", "datapipe = datapipe.copy_to(device)\n",
"train_dataloader = gb.DataLoader(datapipe, num_workers=0)" "train_dataloader = gb.DataLoader(datapipe, num_workers=0)"
], ],
...@@ -165,7 +164,7 @@ ...@@ -165,7 +164,7 @@
{ {
"cell_type": "markdown", "cell_type": "markdown",
"source": [ "source": [
"You can iterate over the data loader and a `DGLMiniBatch` object is yielded.\n", "You can iterate over the data loader and a `MiniBatch` object is yielded.\n",
"\n" "\n"
], ],
"metadata": { "metadata": {
...@@ -184,6 +183,27 @@ ...@@ -184,6 +183,27 @@
"execution_count": null, "execution_count": null,
"outputs": [] "outputs": []
}, },
{
"cell_type": "markdown",
"source": [
"In order to train with DGL, you need to convert `MiniBatch` to `DGLMiniBatch` like below:"
],
"metadata": {
"id": "FwDJf1AJbNtt"
}
},
{
"cell_type": "code",
"source": [
"data = data.to_dgl()\n",
"print(data)"
],
"metadata": {
"id": "3Tzfp6A8bdWv"
},
"execution_count": null,
"outputs": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"source": [ "source": [
...@@ -285,7 +305,6 @@ ...@@ -285,7 +305,6 @@
"datapipe = gb.ItemSampler(valid_set, batch_size=1024, shuffle=False)\n", "datapipe = gb.ItemSampler(valid_set, batch_size=1024, shuffle=False)\n",
"datapipe = datapipe.sample_neighbor(graph, [4, 4])\n", "datapipe = datapipe.sample_neighbor(graph, [4, 4])\n",
"datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n", "datapipe = datapipe.fetch_feature(feature, node_feature_keys=[\"feat\"])\n",
"datapipe = datapipe.to_dgl()\n",
"datapipe = datapipe.copy_to(device)\n", "datapipe = datapipe.copy_to(device)\n",
"valid_dataloader = gb.DataLoader(datapipe, num_workers=0)\n", "valid_dataloader = gb.DataLoader(datapipe, num_workers=0)\n",
"\n", "\n",
...@@ -317,6 +336,7 @@ ...@@ -317,6 +336,7 @@
"\n", "\n",
" with tqdm.tqdm(train_dataloader) as tq:\n", " with tqdm.tqdm(train_dataloader) as tq:\n",
" for step, data in enumerate(tq):\n", " for step, data in enumerate(tq):\n",
" data = data.to_dgl()\n",
" x = data.node_features[\"feat\"]\n", " x = data.node_features[\"feat\"]\n",
" labels = data.labels\n", " labels = data.labels\n",
"\n", "\n",
...@@ -343,6 +363,7 @@ ...@@ -343,6 +363,7 @@
" labels = []\n", " labels = []\n",
" with tqdm.tqdm(valid_dataloader) as tq, torch.no_grad():\n", " with tqdm.tqdm(valid_dataloader) as tq, torch.no_grad():\n",
" for data in tq:\n", " for data in tq:\n",
" data = data.to_dgl()\n",
" x = data.node_features[\"feat\"]\n", " x = data.node_features[\"feat\"]\n",
" labels.append(data.labels.cpu().numpy())\n", " labels.append(data.labels.cpu().numpy())\n",
" predictions.append(model(data.blocks, x).argmax(1).cpu().numpy())\n", " predictions.append(model(data.blocks, x).argmax(1).cpu().numpy())\n",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment