Unverified Commit ad222fb9 authored by Mufei Li's avatar Mufei Li Committed by GitHub
Browse files

Update (#1447)

parent 011656fd
......@@ -66,7 +66,7 @@ Once you have installed the package, you can verify the success of installation
import dgllife
print(dgllife.__version__)
# 0.2.1
# 0.2.2
```
If you are new to DGL, the first time you import dgl a message will pop up as below:
......
package:
name: dgllife{{ environ.get('APP_PACKAGE_SUFFIX', '') }}
version: "0.2.1"
version: "0.2.2"
source:
url: https://files.pythonhosted.org/packages/7d/ca/543802eca0e8d263a73309379f79a054b3bb7e7377ead0b69d2451728465/dgllife-0.2.1.tar.gz
sha256: 11a1622ba587f7ff67f42ad8bc88d238faaa459ab554cf59e1b69a10079d41c0
url: https://files.pythonhosted.org/packages/19/e7/7d9890c7ddb303613f8a9c0bafafa40239e65f9c0698e699f19f577412fc/dgllife-0.2.2.tar.gz
sha256: 812a93d54cd5c049a7368aae01d53b5a4a12ca2d0e4e57d74fa4a844a1c01d92
requirements:
build:
......
......@@ -51,7 +51,7 @@ By default, we store the model per 10000 iterations in `center_results`.
**Speedup**: For an epoch of training, our implementation takes about 5095s for the first epoch while the authors'
implementation takes about 11657s, which is roughly a speedup by 2.3x.
For model evaluation, we can choose whether to exclude reactants not contributing atoms to the product
For model evaluation, we can choose whether to exclude reactants not contributing heavy atoms to the product
(e.g. reagents and solvents) in top-k atom pair selection, which will make the task easier.
For the easier evaluation, do
......@@ -64,8 +64,8 @@ A summary of the model performance is as follows:
| Item | Top 6 accuracy | Top 8 accuracy | Top 10 accuracy |
| --------------- | -------------- | -------------- | --------------- |
| Paper | 89.8 | 92.0 | 93.3 |
| Hard evaluation | 86.5 | 89.6 | 91.2 |
| Easy evaluation | 88.9 | 92.0 | 93.5 |
| Hard evaluation | 88.8 | 91.6 | 92.9 |
| Easy evaluation | 91.0 | 93.7 | 94.9 |
### Pre-trained Model
......
......@@ -31,7 +31,7 @@ class MoleculeCSVDataset(object):
Featurization for edges like bonds in a molecule, which can be used to update
edata for a DGLGraph.
smiles_column: str
Column name that including smiles in ``df``.
Column name for smiles in ``df``.
cache_file_path: str
Path to store the preprocessed DGLGraphs. For example, this can be ``'dglgraph.bin'``.
task_names : list of str or None
......
"""Information for the library."""
# current version
__version__ = '0.2.1'
__version__ = '0.2.2'
......@@ -141,6 +141,8 @@ class WLN(nn.Module):
concat_edge_feats = torch.cat([g.edata['he_src'], edge_feats], dim=1)
g.edata['he'] = self.project_concatenated_messages(concat_edge_feats)
g.update_all(fn.copy_edge('he', 'm'), fn.sum('m', 'hv_new'))
node_feats = self.get_new_node_feats(
torch.cat([node_feats, g.ndata['hv_new']], dim=1))
g = g.local_var()
g.ndata['hv'] = self.project_node_messages(node_feats)
......
......@@ -22,7 +22,7 @@ URL = {
'DGMG_ZINC_canonical': 'pre_trained/dgmg_ZINC_canonical.pth',
'DGMG_ZINC_random': 'pre_trained/dgmg_ZINC_random.pth',
'JTNN_ZINC': 'pre_trained/JTNN_ZINC.pth',
'wln_center_uspto': 'dgllife/pre_trained/wln_center_uspto.pth'
'wln_center_uspto': 'dgllife/pre_trained/wln_center_uspto_v2.pth'
}
def download_and_load_checkpoint(model_name, model, model_postfix,
......
......@@ -8,7 +8,7 @@ List of affected files:
import os
import re
__version__ = "0.2.1"
__version__ = "0.2.2"
print(__version__)
# Implementations
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment