"tests/git@developer.sourcefind.cn:OpenDAS/dgl.git" did not exist on "5a2451047fd8156a86bcfa6fd157a3f31328726e"
Unverified Commit ab0c0ec6 authored by peizhou001's avatar peizhou001 Committed by GitHub
Browse files

[API Deprecation] Deprecate candidates in convert module (#4988) (#5115)

parent 46a3fc2b
......@@ -10,20 +10,16 @@ from . import heterograph_index
from .heterograph import DGLGraph, combine_frames, DGLBlock
from . import graph_index
from . import utils
from .base import NTYPE, ETYPE, NID, EID, DGLError, dgl_warning
from .base import NTYPE, ETYPE, NID, EID, DGLError
__all__ = [
'graph',
'bipartite',
'hetero_from_relations',
'hetero_from_shared_memory',
'heterograph',
'create_block',
'block_to_graph',
'to_heterogeneous',
'to_hetero',
'to_homogeneous',
'to_homo',
'from_scipy',
'bipartite_from_scipy',
'from_networkx',
......@@ -34,14 +30,12 @@ __all__ = [
]
def graph(data,
ntype=None, etype=None,
*,
num_nodes=None,
idtype=None,
device=None,
row_sorted=False,
col_sorted=False,
**deprecated_kwargs):
col_sorted=False):
"""Create a graph and return.
Parameters
......@@ -67,10 +61,6 @@ def graph(data,
The tensors can be replaced with any iterable of integers (e.g. list, tuple,
numpy.ndarray).
ntype : str, optional
Deprecated. To construct a graph with named node types, use :func:`dgl.heterograph`.
etype : str, optional
Deprecated. To construct a graph with named edge types, use :func:`dgl.heterograph`.
num_nodes : int, optional
The number of nodes in the graph. If not given, this will be the largest node ID
plus 1 from the :attr:`data` argument. If given and the value is no greater than
......@@ -156,14 +146,6 @@ def graph(data,
from_scipy
from_networkx
"""
# Deprecated arguments
if ntype is not None:
raise DGLError('The ntype argument is deprecated for dgl.graph. To construct ' \
'a graph with named node types, use dgl.heterograph.')
if etype is not None:
raise DGLError('The etype argument is deprecated for dgl.graph. To construct ' \
'a graph with named edge types, use dgl.heterograph.')
if isinstance(data, spmatrix):
raise DGLError("dgl.graph no longer supports graph construction from a SciPy "
"sparse matrix, use dgl.from_scipy instead.")
......@@ -172,12 +154,6 @@ def graph(data,
raise DGLError("dgl.graph no longer supports graph construction from a NetworkX "
"graph, use dgl.from_networkx instead.")
if len(deprecated_kwargs) != 0:
raise DGLError("Key word arguments {} have been removed from dgl.graph()."
" They are moved to dgl.from_scipy() and dgl.from_networkx()."
" Please refer to their API documents for more details.".format(
deprecated_kwargs.keys()))
(sparse_fmt, arrays), urange, vrange = utils.graphdata2tensors(data, idtype)
if num_nodes is not None: # override the number of nodes
if num_nodes < max(urange, vrange):
......@@ -190,24 +166,6 @@ def graph(data,
return g.to(device)
def bipartite(data,
utype='_U', etype='_E', vtype='_V',
num_nodes=None,
card=None,
validate=True,
restrict_format='any',
**kwargs):
"""DEPRECATED: use dgl.heterograph instead."""
raise DGLError(
'dgl.bipartite is deprecated. Use dgl.heterograph({' +
"('{}', '{}', '{}')".format(utype, etype, vtype) +
' : data} to create a bipartite graph instead.')
def hetero_from_relations(rel_graphs, num_nodes_per_type=None):
"""DEPRECATED: use dgl.heterograph instead."""
raise DGLError('dgl.hetero_from_relations is deprecated.\n\n'
'Use dgl.heterograph instead.')
def hetero_from_shared_memory(name):
"""Create a heterograph from shared memory with the given name.
......@@ -826,16 +784,6 @@ def to_heterogeneous(G, ntypes, etypes, ntype_field=NTYPE,
return hg
def to_hetero(G, ntypes, etypes, ntype_field=NTYPE, etype_field=ETYPE,
metagraph=None):
"""Convert the given homogeneous graph to a heterogeneous graph.
DEPRECATED: Please use to_heterogeneous
"""
dgl_warning("dgl.to_hetero is deprecated. Please use dgl.to_heterogeneous")
return to_heterogeneous(G, ntypes, etypes, ntype_field=ntype_field,
etype_field=etype_field, metagraph=metagraph)
def to_homogeneous(G, ndata=None, edata=None, store_type=True, return_count=False):
"""Convert a heterogeneous graph to a homogeneous graph and return.
......@@ -991,14 +939,6 @@ def to_homogeneous(G, ndata=None, edata=None, store_type=True, return_count=Fals
else:
return retg
def to_homo(G):
"""Convert the given heterogeneous graph to a homogeneous graph.
DEPRECATED: Please use to_homogeneous
"""
dgl_warning("dgl.to_homo is deprecated. Please use dgl.to_homogeneous")
return to_homogeneous(G)
def from_scipy(sp_mat,
eweight_name=None,
idtype=None,
......
......@@ -652,7 +652,9 @@ class DistGraph:
--------
The following example uses PyTorch backend.
>>> g = dgl.bipartite(([0, 1, 1, 2], [0, 0, 2, 1]), 'user', 'plays', 'game')
>>> g = dgl.heterograph({
... ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1])
... })
>>> print(g.device)
device(type='cpu')
>>> g = g.to('cuda:0')
......
......@@ -93,7 +93,7 @@ class GMMConv(nn.Block):
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.bipartite((u, v))
>>> g = dgl.heterograph({('_N', '_E', '_N'):(u, v)})
>>> u_fea = mx.nd.random.randn(2, 5)
>>> v_fea = mx.nd.random.randn(4, 10)
>>> pseudo = mx.nd.ones((5, 3))
......
......@@ -120,7 +120,7 @@ class GraphConv(gluon.Block):
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.bipartite((u, v))
>>> g = dgl.heterograph({('_N', '_E', '_N'):(u, v)})
>>> u_fea = mx.nd.random.randn(2, 5)
>>> v_fea = mx.nd.random.randn(4, 5)
>>> conv = GraphConv(5, 2, norm='both', weight=True, bias=True)
......
......@@ -75,7 +75,7 @@ class NNConv(nn.Block):
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.bipartite((u, v))
>>> g = dgl.heterograph({('_N', '_E', '_N'):(u, v)})
>>> u_feat = mx.nd.random.randn(2, 10)
>>> v_feat = mx.nd.random.randn(4, 10)
>>> conv = NNConv(10, 2, edge_func, 'mean')
......
......@@ -76,7 +76,7 @@ class SAGEConv(nn.Block):
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.bipartite((u, v))
>>> g = dgl.heterograph({('_N', '_E', '_N'):(u, v)})
>>> u_fea = mx.nd.random.randn(2, 5)
>>> v_fea = mx.nd.random.randn(4, 10)
>>> conv = SAGEConv((5, 10), 2, 'pool')
......
......@@ -99,7 +99,7 @@ class DotGatConv(nn.Module):
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.bipartite((u, v))
>>> g = dgl.heterograph({('_N', '_E', '_N'):(u, v)})
>>> u_feat = th.tensor(np.random.rand(2, 5).astype(np.float32))
>>> v_feat = th.tensor(np.random.rand(4, 10).astype(np.float32))
>>> dotgatconv = DotGatConv((5,10), 2, 3)
......
......@@ -81,7 +81,7 @@ class EdgeConv(nn.Module):
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.bipartite((u, v))
>>> g = dgl.heterograph({('_N', '_E', '_N'):(u, v)})
>>> u_fea = th.rand(2, 5)
>>> v_fea = th.rand(4, 5)
>>> conv = EdgeConv(5, 2, 3)
......
......@@ -91,7 +91,7 @@ class GMMConv(nn.Module):
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.bipartite((u, v))
>>> g = dgl.heterograph({('_N', '_E', '_N'):(u, v)})
>>> u_fea = th.rand(2, 5)
>>> v_fea = th.rand(4, 10)
>>> pseudo = th.ones(5, 3)
......
......@@ -72,7 +72,7 @@ class NNConv(nn.Module):
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.bipartite((u, v))
>>> g = dgl.heterograph({('_N', '_E', '_N'):(u, v)})
>>> u_feat = th.tensor(np.random.rand(2, 10).astype(np.float32))
>>> v_feat = th.tensor(np.random.rand(4, 10).astype(np.float32))
>>> conv = NNConv(10, 2, edge_func, 'mean')
......
......@@ -83,7 +83,7 @@ class SAGEConv(nn.Module):
>>> # Case 2: Unidirectional bipartite graph
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.bipartite((u, v))
>>> g = dgl.heterograph({('_N', '_E', '_N'):(u, v)})
>>> u_fea = th.rand(2, 5)
>>> v_fea = th.rand(4, 10)
>>> conv = SAGEConv((5, 10), 2, 'mean')
......
......@@ -122,7 +122,7 @@ class GraphConv(layers.Layer):
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> with tf.device("CPU:0"):
... g = dgl.bipartite((u, v))
... g = dgl.heterograph({('_N', '_E', '_N'):(u, v)})
... u_fea = tf.convert_to_tensor(np.random.rand(2, 5))
... v_fea = tf.convert_to_tensor(np.random.rand(4, 5))
... conv = GraphConv(5, 2, norm='both', weight=True, bias=True)
......
......@@ -76,7 +76,7 @@ class SAGEConv(layers.Layer):
>>> with tf.device("CPU:0"):
>>> u = [0, 1, 0, 0, 1]
>>> v = [0, 1, 2, 3, 2]
>>> g = dgl.bipartite((u, v))
>>> g = dgl.heterograph({('_N', '_E', '_N'):(u, v)})
>>> u_fea = tf.convert_to_tensor(np.random.rand(2, 5))
>>> v_fea = tf.convert_to_tensor(np.random.rand(4, 5))
>>> conv = SAGEConv((5, 10), 2, 'mean')
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment