Unverified Commit 9836f78e authored by Hongzhi (Steve), Chen's avatar Hongzhi (Steve), Chen Committed by GitHub
Browse files

autoformat (#5322)


Co-authored-by: default avatarUbuntu <ubuntu@ip-172-31-28-63.ap-northeast-1.compute.internal>
parent 704bcaf6
import time
import numpy as np
import torch
import dgl
import dgl.function as fn
import numpy as np
import torch
from .. import utils
......
import time
import torch
import dgl
import torch
from .. import utils
......
import time
import numpy as np
import torch
import dgl
import dgl.function as fn
import numpy as np
import torch
from .. import utils
......
import time
import numpy as np
import torch
import dgl
import dgl.function as fn
import numpy as np
import torch
from .. import utils
......
import time
import dgl
import torch
import numpy as np
import dgl.function as fn
import numpy as np
import torch
from .. import utils
@utils.benchmark('time', timeout=600)
@utils.parametrize('feat_size', [32, 128, 512])
@utils.parametrize('num_relations', [5, 50, 500])
@utils.parametrize('multi_reduce_type', ["sum", "stack"])
@utils.benchmark("time", timeout=600)
@utils.parametrize("feat_size", [32, 128, 512])
@utils.parametrize("num_relations", [5, 50, 500])
@utils.parametrize("multi_reduce_type", ["sum", "stack"])
def track_time(feat_size, num_relations, multi_reduce_type):
device = utils.get_bench_device()
dd = {}
candidate_edges = [dgl.data.CoraGraphDataset(verbose=False)[0].edges(), dgl.data.PubmedGraphDataset(verbose=False)[
0].edges(), dgl.data.CiteseerGraphDataset(verbose=False)[0].edges()]
candidate_edges = [
dgl.data.CoraGraphDataset(verbose=False)[0].edges(),
dgl.data.PubmedGraphDataset(verbose=False)[0].edges(),
dgl.data.CiteseerGraphDataset(verbose=False)[0].edges(),
]
for i in range(num_relations):
dd[('n1', 'e_{}'.format(i), 'n2')] = candidate_edges[i %
len(candidate_edges)]
dd[("n1", "e_{}".format(i), "n2")] = candidate_edges[
i % len(candidate_edges)
]
graph = dgl.heterograph(dd)
graph = graph.to(device)
graph.nodes['n1'].data['h'] = torch.randn(
(graph.num_nodes('n1'), feat_size), device=device)
graph.nodes['n2'].data['h'] = torch.randn(
(graph.num_nodes('n2'), feat_size), device=device)
graph.nodes["n1"].data["h"] = torch.randn(
(graph.num_nodes("n1"), feat_size), device=device
)
graph.nodes["n2"].data["h"] = torch.randn(
(graph.num_nodes("n2"), feat_size), device=device
)
# dry run
update_dict = {}
for i in range(num_relations):
update_dict['e_{}'.format(i)] = (
fn.copy_u('h', 'm'), fn.sum('m', 'h'))
graph.multi_update_all(
update_dict,
multi_reduce_type)
update_dict["e_{}".format(i)] = (fn.copy_u("h", "m"), fn.sum("m", "h"))
graph.multi_update_all(update_dict, multi_reduce_type)
# timing
with utils.Timer() as t:
for i in range(3):
graph.multi_update_all(
update_dict,
multi_reduce_type)
graph.multi_update_all(update_dict, multi_reduce_type)
return t.elapsed_secs / 3
import time
import numpy as np
import torch
import dgl
import dgl.function as fn
import numpy as np
import torch
from .. import utils
......
import time
import numpy as np
import torch
import dgl
import dgl.function as fn
import numpy as np
import torch
from .. import utils
......
import time
import dgl
import numpy as np
import torch
import dgl
from .. import utils
......
import time
import numpy as np
import torch
import dgl
import dgl.function as fn
import numpy as np
import torch
from .. import utils
......
import time
import dgl
import numpy as np
import torch
import dgl
from .. import utils
......
import time
import dgl
import numpy as np
import torch
import dgl
from .. import utils
......
import time
import numpy as np
import torch
import dgl
import dgl.function as fn
import numpy as np
import torch
from .. import utils
......
import time
import numpy as np
import torch
import dgl
import dgl.function as fn
import numpy as np
import torch
from .. import utils
......
import time
import numpy as np
import torch
import dgl
import dgl.function as fn
import numpy as np
import torch
from .. import utils
......
import time
import dgl
import numpy as np
import torch
import dgl
from .. import utils
......
import time
import dgl
import numpy as np
import torch
import dgl
from .. import utils
......
import time
import numpy as np
import torch
import dgl
import dgl.function as fn
import numpy as np
import torch
from .. import utils
......
import time
import dgl
import numpy as np
import torch
import dgl
from .. import utils
......
import time
import dgl
import numpy as np
import torch
import dgl
from .. import utils
......
import time
import dgl
import numpy as np
import torch
import dgl
from .. import utils
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment