Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dgl
Commits
905321f8
Unverified
Commit
905321f8
authored
Jan 16, 2024
by
Mingbang Wang
Committed by
GitHub
Jan 16, 2024
Browse files
[GraphBolt] Modify `__repr__` (#6953)
parent
80f36134
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
87 additions
and
114 deletions
+87
-114
python/dgl/graphbolt/impl/ondisk_dataset.py
python/dgl/graphbolt/impl/ondisk_dataset.py
+19
-23
python/dgl/graphbolt/impl/torch_based_feature_store.py
python/dgl/graphbolt/impl/torch_based_feature_store.py
+18
-39
python/dgl/graphbolt/itemset.py
python/dgl/graphbolt/itemset.py
+10
-10
tests/python/pytorch/graphbolt/impl/test_ondisk_dataset.py
tests/python/pytorch/graphbolt/impl/test_ondisk_dataset.py
+40
-42
No files found.
python/dgl/graphbolt/impl/ondisk_dataset.py
View file @
905321f8
...
@@ -3,6 +3,7 @@
...
@@ -3,6 +3,7 @@
import
json
import
json
import
os
import
os
import
shutil
import
shutil
import
textwrap
from
copy
import
deepcopy
from
copy
import
deepcopy
from
typing
import
Dict
,
List
,
Union
from
typing
import
Dict
,
List
,
Union
...
@@ -339,7 +340,24 @@ class OnDiskTask:
...
@@ -339,7 +340,24 @@ class OnDiskTask:
return
self
.
_test_set
return
self
.
_test_set
def
__repr__
(
self
)
->
str
:
def
__repr__
(
self
)
->
str
:
return
_ondisk_task_str
(
self
)
ret
=
"{Classname}({attributes})"
attributes_str
=
""
attributes
=
get_attributes
(
self
)
attributes
.
reverse
()
for
attribute
in
attributes
:
if
attribute
[
0
]
==
"_"
:
continue
value
=
getattr
(
self
,
attribute
)
attributes_str
+=
f
"
{
attribute
}
=
{
value
}
,
\n
"
attributes_str
=
textwrap
.
indent
(
attributes_str
,
" "
*
len
(
"OnDiskTask("
)
).
strip
()
return
ret
.
format
(
Classname
=
self
.
__class__
.
__name__
,
attributes
=
attributes_str
)
class
OnDiskDataset
(
Dataset
):
class
OnDiskDataset
(
Dataset
):
...
@@ -752,25 +770,3 @@ class BuiltinDataset(OnDiskDataset):
...
@@ -752,25 +770,3 @@ class BuiltinDataset(OnDiskDataset):
extract_archive
(
zip_file_path
,
root
,
overwrite
=
True
)
extract_archive
(
zip_file_path
,
root
,
overwrite
=
True
)
os
.
remove
(
zip_file_path
)
os
.
remove
(
zip_file_path
)
super
().
__init__
(
dataset_dir
,
force_preprocess
=
False
)
super
().
__init__
(
dataset_dir
,
force_preprocess
=
False
)
def
_ondisk_task_str
(
task
:
OnDiskTask
)
->
str
:
final_str
=
"OnDiskTask("
indent_len
=
len
(
final_str
)
def
_add_indent
(
_str
,
indent
):
lines
=
_str
.
split
(
"
\n
"
)
lines
=
[
lines
[
0
]]
+
[
" "
*
indent
+
line
for
line
in
lines
[
1
:]]
return
"
\n
"
.
join
(
lines
)
attributes
=
get_attributes
(
task
)
attributes
.
reverse
()
for
name
in
attributes
:
if
name
[
0
]
==
"_"
:
continue
val
=
getattr
(
task
,
name
)
final_str
+=
(
f
"
{
name
}
=
{
_add_indent
(
str
(
val
),
indent_len
+
len
(
name
)
+
1
)
}
,
\n
"
+
" "
*
indent_len
)
return
final_str
[:
-
indent_len
]
+
")"
python/dgl/graphbolt/impl/torch_based_feature_store.py
View file @
905321f8
...
@@ -172,36 +172,24 @@ class TorchBasedFeature(Feature):
...
@@ -172,36 +172,24 @@ class TorchBasedFeature(Feature):
def
__repr__
(
self
)
->
str
:
def
__repr__
(
self
)
->
str
:
ret
=
(
ret
=
(
"
TorchBasedFeature
(
\n
"
"
{Classname}
(
\n
"
" feature={feature},
\n
"
" feature={feature},
\n
"
" metadata={metadata},
\n
"
" metadata={metadata},
\n
"
")"
")"
)
)
feature_str
=
str
(
self
.
_tensor
)
feature_str
=
textwrap
.
indent
(
feature_str_lines
=
feature_str
.
splitlines
()
str
(
self
.
_tensor
),
" "
*
len
(
" feature="
)
if
len
(
feature_str_lines
)
>
1
:
).
strip
()
feature_str
=
(
metadata_str
=
textwrap
.
indent
(
feature_str_lines
[
0
]
str
(
self
.
metadata
()),
" "
*
len
(
" metadata="
)
+
"
\n
"
).
strip
()
+
textwrap
.
indent
(
"
\n
"
.
join
(
feature_str_lines
[
1
:]),
" "
*
len
(
" feature="
)
return
ret
.
format
(
)
Classname
=
self
.
__class__
.
__name__
,
)
feature
=
feature_str
,
metadata
=
metadata_str
,
metadata_str
=
str
(
self
.
metadata
())
)
metadata_str_lines
=
metadata_str
.
splitlines
()
if
len
(
metadata_str_lines
)
>
1
:
metadata_str
=
(
metadata_str_lines
[
0
]
+
"
\n
"
+
textwrap
.
indent
(
"
\n
"
.
join
(
metadata_str_lines
[
1
:]),
" "
*
len
(
" metadata="
),
)
)
return
ret
.
format
(
feature
=
feature_str
,
metadata
=
metadata_str
)
class
TorchBasedFeatureStore
(
BasicFeatureStore
):
class
TorchBasedFeatureStore
(
BasicFeatureStore
):
...
@@ -268,17 +256,8 @@ class TorchBasedFeatureStore(BasicFeatureStore):
...
@@ -268,17 +256,8 @@ class TorchBasedFeatureStore(BasicFeatureStore):
feature
.
pin_memory_
()
feature
.
pin_memory_
()
def
__repr__
(
self
)
->
str
:
def
__repr__
(
self
)
->
str
:
ret
=
"TorchBasedFeatureStore(
\n
"
+
" {features}
\n
"
+
")"
ret
=
"{Classname}(
\n
"
+
" {features}
\n
"
+
")"
features_str
=
textwrap
.
indent
(
str
(
self
.
_features
),
" "
).
strip
()
features_str
=
str
(
self
.
_features
)
return
ret
.
format
(
features_str_lines
=
features_str
.
splitlines
()
Classname
=
self
.
__class__
.
__name__
,
features
=
features_str
if
len
(
features_str_lines
)
>
1
:
)
features_str
=
(
features_str_lines
[
0
]
+
"
\n
"
+
textwrap
.
indent
(
"
\n
"
.
join
(
features_str_lines
[
1
:]),
" "
*
len
(
" "
)
)
)
return
ret
.
format
(
features
=
features_str
)
python/dgl/graphbolt/itemset.py
View file @
905321f8
...
@@ -180,7 +180,7 @@ class ItemSet:
...
@@ -180,7 +180,7 @@ class ItemSet:
def
__repr__
(
self
)
->
str
:
def
__repr__
(
self
)
->
str
:
ret
=
(
ret
=
(
f
"
ItemSet
(
\n
"
f
"
{
self
.
__class__
.
__name__
}
(
\n
"
f
" items=
{
self
.
_items
}
,
\n
"
f
" items=
{
self
.
_items
}
,
\n
"
f
" names=
{
self
.
_names
}
,
\n
"
f
" names=
{
self
.
_names
}
,
\n
"
f
")"
f
")"
...
@@ -342,18 +342,18 @@ class ItemSetDict:
...
@@ -342,18 +342,18 @@ class ItemSetDict:
def
__repr__
(
self
)
->
str
:
def
__repr__
(
self
)
->
str
:
ret
=
(
ret
=
(
"
ItemSetDict
(
\n
"
"
{Classname}
(
\n
"
" itemsets={itemsets},
\n
"
" itemsets={itemsets},
\n
"
" names={names},
\n
"
" names={names},
\n
"
")"
")"
)
)
itemsets_str
=
repr
(
self
.
_itemsets
)
itemsets_str
=
textwrap
.
indent
(
lines
=
itemsets_str
.
splitlines
()
repr
(
self
.
_itemsets
),
" "
*
len
(
" itemsets="
)
itemsets_str
=
(
).
strip
()
lines
[
0
]
+
"
\n
"
+
textwrap
.
indent
(
"
\n
"
.
join
(
lines
[
1
:]),
" "
*
len
(
" itemsets="
))
)
return
ret
.
format
(
itemsets
=
itemsets_str
,
names
=
self
.
_names
)
return
ret
.
format
(
Classname
=
self
.
__class__
.
__name__
,
itemsets
=
itemsets_str
,
names
=
self
.
_names
,
)
tests/python/pytorch/graphbolt/impl/test_ondisk_dataset.py
View file @
905321f8
...
@@ -2570,21 +2570,20 @@ def test_OnDiskTask_repr_homogeneous():
...
@@ -2570,21 +2570,20 @@ def test_OnDiskTask_repr_homogeneous():
task
=
gb
.
OnDiskTask
(
metadata
,
item_set
,
item_set
,
item_set
)
task
=
gb
.
OnDiskTask
(
metadata
,
item_set
,
item_set
,
item_set
)
expected_str
=
(
expected_str
=
(
"OnDiskTask(validation_set=ItemSet(
\n
"
"OnDiskTask(validation_set=ItemSet(
\n
"
"
items=(tensor([0, 1, 2, 3, 4]), tensor([5, 6, 7, 8, 9])),
\n
"
" items=(tensor([0, 1, 2, 3, 4]), tensor([5, 6, 7, 8, 9])),
\n
"
"
names=('seed_nodes', 'labels'),
\n
"
" names=('seed_nodes', 'labels'),
\n
"
"
),
\n
"
" ),
\n
"
" train_set=ItemSet(
\n
"
" train_set=ItemSet(
\n
"
"
items=(tensor([0, 1, 2, 3, 4]), tensor([5, 6, 7, 8, 9])),
\n
"
" items=(tensor([0, 1, 2, 3, 4]), tensor([5, 6, 7, 8, 9])),
\n
"
"
names=('seed_nodes', 'labels'),
\n
"
" names=('seed_nodes', 'labels'),
\n
"
"
),
\n
"
" ),
\n
"
" test_set=ItemSet(
\n
"
" test_set=ItemSet(
\n
"
" items=(tensor([0, 1, 2, 3, 4]), tensor([5, 6, 7, 8, 9])),
\n
"
" items=(tensor([0, 1, 2, 3, 4]), tensor([5, 6, 7, 8, 9])),
\n
"
" names=('seed_nodes', 'labels'),
\n
"
" names=('seed_nodes', 'labels'),
\n
"
" ),
\n
"
" ),
\n
"
" metadata={'name': 'node_classification'},
\n
"
" metadata={'name': 'node_classification'},)"
")"
)
)
assert
st
r
(
task
)
==
expected_str
,
print
(
task
)
assert
rep
r
(
task
)
==
expected_str
,
task
def
test_OnDiskTask_repr_heterogeneous
():
def
test_OnDiskTask_repr_heterogeneous
():
...
@@ -2598,39 +2597,38 @@ def test_OnDiskTask_repr_heterogeneous():
...
@@ -2598,39 +2597,38 @@ def test_OnDiskTask_repr_heterogeneous():
task
=
gb
.
OnDiskTask
(
metadata
,
item_set
,
item_set
,
item_set
)
task
=
gb
.
OnDiskTask
(
metadata
,
item_set
,
item_set
,
item_set
)
expected_str
=
(
expected_str
=
(
"OnDiskTask(validation_set=ItemSetDict(
\n
"
"OnDiskTask(validation_set=ItemSetDict(
\n
"
"
itemsets={'user': ItemSet(
\n
"
" itemsets={'user': ItemSet(
\n
"
"
items=(tensor([0, 1, 2, 3, 4]),),
\n
"
" items=(tensor([0, 1, 2, 3, 4]),),
\n
"
"
names=('seed_nodes',),
\n
"
" names=('seed_nodes',),
\n
"
"
), 'item': ItemSet(
\n
"
" ), 'item': ItemSet(
\n
"
"
items=(tensor([5, 6, 7, 8, 9]),),
\n
"
" items=(tensor([5, 6, 7, 8, 9]),),
\n
"
"
names=('seed_nodes',),
\n
"
" names=('seed_nodes',),
\n
"
"
)},
\n
"
" )},
\n
"
"
names=('seed_nodes',),
\n
"
" names=('seed_nodes',),
\n
"
"
),
\n
"
" ),
\n
"
" train_set=ItemSetDict(
\n
"
" train_set=ItemSetDict(
\n
"
"
itemsets={'user': ItemSet(
\n
"
" itemsets={'user': ItemSet(
\n
"
"
items=(tensor([0, 1, 2, 3, 4]),),
\n
"
" items=(tensor([0, 1, 2, 3, 4]),),
\n
"
"
names=('seed_nodes',),
\n
"
" names=('seed_nodes',),
\n
"
"
), 'item': ItemSet(
\n
"
" ), 'item': ItemSet(
\n
"
"
items=(tensor([5, 6, 7, 8, 9]),),
\n
"
" items=(tensor([5, 6, 7, 8, 9]),),
\n
"
"
names=('seed_nodes',),
\n
"
" names=('seed_nodes',),
\n
"
"
)},
\n
"
" )},
\n
"
"
names=('seed_nodes',),
\n
"
" names=('seed_nodes',),
\n
"
"
),
\n
"
" ),
\n
"
" test_set=ItemSetDict(
\n
"
" test_set=ItemSetDict(
\n
"
" itemsets={'user': ItemSet(
\n
"
" itemsets={'user': ItemSet(
\n
"
" items=(tensor([0, 1, 2, 3, 4]),),
\n
"
" items=(tensor([0, 1, 2, 3, 4]),),
\n
"
" names=('seed_nodes',),
\n
"
" names=('seed_nodes',),
\n
"
" ), 'item': ItemSet(
\n
"
" ), 'item': ItemSet(
\n
"
" items=(tensor([5, 6, 7, 8, 9]),),
\n
"
" items=(tensor([5, 6, 7, 8, 9]),),
\n
"
" names=('seed_nodes',),
\n
"
" names=('seed_nodes',),
\n
"
" )},
\n
"
" )},
\n
"
" names=('seed_nodes',),
\n
"
" names=('seed_nodes',),
\n
"
" ),
\n
"
" ),
\n
"
" metadata={'name': 'node_classification'},
\n
"
" metadata={'name': 'node_classification'},)"
")"
)
)
assert
st
r
(
task
)
==
expected_str
,
print
(
task
)
assert
rep
r
(
task
)
==
expected_str
,
task
def
test_OnDiskDataset_load_tasks_selectively
():
def
test_OnDiskDataset_load_tasks_selectively
():
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment