"docs/vscode:/vscode.git/clone" did not exist on "7ef8a46523326b5ebafa5c8a588d128d195d2f25"
Unverified Commit 863c2495 authored by Yang Su's avatar Yang Su Committed by GitHub
Browse files

Fix User Guide EN and CN typo (#3495)



* Update graph-heterogeneous.rst

`tensor([0, 1, 2, 0, 1, 2])` should be output instead of code

* Update message-api.rst

`updata_all_example()` should be `update_all_example()`

* Update message-efficient.rst

`cat_feat` need to concatenate with `dim=1` for the # edge features to match # edges

* Update nn-construction.rst

all `max_pool` in the aggregator type of `SAGEConv` should be `pool` instead

* Update graph-heterogeneous.rst

`tensor([0, 1, 2, 0, 1, 2])` should be output instead of code

* Update message-api.rst

`updata_all_example()` should be `update_all_example()`

* Update message-efficient.rst

`cat_feat` need to concatenate with `dim=1` for the # edge features to match # edges

* Update nn-construction.rst

all `max_pool` in the aggregator type of `SAGEConv` should be `pool` instead

* Update nn-forward.rst

all `max_pool` in the aggregator type of `SAGEConv` should be `pool` instead

* Update nn-forward.rst

all `max_pool` in the aggregator type of `SAGEConv` should be `pool` instead
Co-authored-by: default avatarzhjwy9343 <6593865@qq.com>
parent 473d5e0a
......@@ -251,7 +251,7 @@ The original node/edge types and type-specific IDs are stored in :py:attr:`~dgl.
tensor([0, 0, 0, 1, 1, 1])
>>> # Original type-specific node IDs
>>> hg.ndata[dgl.NID]
>>> tensor([0, 1, 2, 0, 1, 2])
tensor([0, 1, 2, 0, 1, 2])
>>> # Order of edge types in the heterograph
>>> g.etypes
......
......@@ -82,7 +82,7 @@ example:
.. code::
def updata_all_example(graph):
def update_all_example(graph):
# store the result in graph.ndata['ft']
graph.update_all(fn.u_mul_e('ft', 'a', 'm'),
fn.sum('m', 'ft'))
......@@ -105,4 +105,4 @@ compute capacity requirement of ``sm_53`` (Pascal, Volta, Turing and Ampere
architectures).
User can enable float16 for mixed precision training by compiling DGL from source
(see :doc:`Mixed Precision Training <mixed_precision>` tutorial for details).
\ No newline at end of file
(see :doc:`Mixed Precision Training <mixed_precision>` tutorial for details).
......@@ -32,7 +32,7 @@ implementation would be like:
linear = nn.Parameter(torch.FloatTensor(size=(node_feat_dim * 2, out_dim)))
def concat_message_function(edges):
return {'cat_feat': torch.cat([edges.src['feat'], edges.dst['feat']])}
return {'cat_feat': torch.cat([edges.src['feat'], edges.dst['feat']], dim=1)}
g.apply_edges(concat_message_function)
g.edata['out'] = g.edata['cat_feat'] @ linear
......
......@@ -52,14 +52,14 @@ SAGEConv paper, such normalization can be l2 normalization:
.. code::
# aggregator type: mean, max_pool, lstm, gcn
if aggregator_type not in ['mean', 'max_pool', 'lstm', 'gcn']:
# aggregator type: mean, pool, lstm, gcn
if aggregator_type not in ['mean', 'pool', 'lstm', 'gcn']:
raise KeyError('Aggregator type {} not supported.'.format(aggregator_type))
if aggregator_type == 'max_pool':
if aggregator_type == 'pool':
self.fc_pool = nn.Linear(self._in_src_feats, self._in_src_feats)
if aggregator_type == 'lstm':
self.lstm = nn.LSTM(self._in_src_feats, self._in_src_feats, batch_first=True)
if aggregator_type in ['mean', 'max_pool', 'lstm']:
if aggregator_type in ['mean', 'pool', 'lstm']:
self.fc_self = nn.Linear(self._in_dst_feats, out_feats, bias=bias)
self.fc_neigh = nn.Linear(self._in_src_feats, out_feats, bias=bias)
self.reset_parameters()
......@@ -75,7 +75,7 @@ function, weight initialization is applied by calling
def reset_parameters(self):
"""Reinitialize learnable parameters."""
gain = nn.init.calculate_gain('relu')
if self._aggre_type == 'max_pool':
if self._aggre_type == 'pool':
nn.init.xavier_uniform_(self.fc_pool.weight, gain=gain)
if self._aggre_type == 'lstm':
self.lstm.reset_parameters()
......
......@@ -125,7 +125,7 @@ Message passing and reducing
# divide in_degrees
degs = graph.in_degrees().to(feat_dst)
h_neigh = (graph.dstdata['neigh'] + graph.dstdata['h']) / (degs.unsqueeze(-1) + 1)
elif self._aggre_type == 'max_pool':
elif self._aggre_type == 'pool':
graph.srcdata['h'] = F.relu(self.fc_pool(feat_src))
graph.update_all(fn.copy_u('h', 'm'), fn.max('m', 'neigh'))
h_neigh = graph.dstdata['neigh']
......
......@@ -235,7 +235,7 @@ DGL提供了 :func:`dgl.save_graphs` 和 :func:`dgl.load_graphs` 函数,分别
tensor([0, 0, 0, 1, 1, 1])
>>> # 原始的特定类型节点ID
>>> hg.ndata[dgl.NID]
>>> tensor([0, 1, 2, 0, 1, 2])
tensor([0, 1, 2, 0, 1, 2])
>>> # 异构图中边类型的顺序
>>> g.etypes
......
......@@ -62,7 +62,7 @@ DGL支持内置的聚合函数 ``sum``、 ``max``、 ``min`` 和 ``mean`` 操作
.. code::
def updata_all_example(graph):
def update_all_example(graph):
# 在graph.ndata['ft']中存储结果
graph.update_all(fn.u_mul_e('ft', 'a', 'm'),
fn.sum('m', 'ft'))
......
......@@ -22,7 +22,7 @@ DGL建议用户尽量减少边的特征维数。
linear = nn.Parameter(torch.FloatTensor(size=(node_feat_dim * 2, out_dim)))
def concat_message_function(edges):
return {'cat_feat': torch.cat([edges.src.ndata['feat'], edges.dst.ndata['feat']])}
return {'cat_feat': torch.cat([edges.src.ndata['feat'], edges.dst.ndata['feat']], dim=1)}
g.apply_edges(concat_message_function)
g.edata['out'] = g.edata['cat_feat'] @ linear
......
......@@ -44,14 +44,14 @@
.. code::
# 聚合类型:mean、max_pool、lstm、gcn
if aggregator_type not in ['mean', 'max_pool', 'lstm', 'gcn']:
# 聚合类型:mean、pool、lstm、gcn
if aggregator_type not in ['mean', 'pool', 'lstm', 'gcn']:
raise KeyError('Aggregator type {} not supported.'.format(aggregator_type))
if aggregator_type == 'max_pool':
if aggregator_type == 'pool':
self.fc_pool = nn.Linear(self._in_src_feats, self._in_src_feats)
if aggregator_type == 'lstm':
self.lstm = nn.LSTM(self._in_src_feats, self._in_src_feats, batch_first=True)
if aggregator_type in ['mean', 'max_pool', 'lstm']:
if aggregator_type in ['mean', 'pool', 'lstm']:
self.fc_self = nn.Linear(self._in_dst_feats, out_feats, bias=bias)
self.fc_neigh = nn.Linear(self._in_src_feats, out_feats, bias=bias)
self.reset_parameters()
......@@ -64,7 +64,7 @@
def reset_parameters(self):
"""重新初始化可学习的参数"""
gain = nn.init.calculate_gain('relu')
if self._aggre_type == 'max_pool':
if self._aggre_type == 'pool':
nn.init.xavier_uniform_(self.fc_pool.weight, gain=gain)
if self._aggre_type == 'lstm':
self.lstm.reset_parameters()
......
......@@ -105,7 +105,7 @@ SAGEConv的数学公式如下:
# 除以入度
degs = graph.in_degrees().to(feat_dst)
h_neigh = (graph.dstdata['neigh'] + graph.dstdata['h']) / (degs.unsqueeze(-1) + 1)
elif self._aggre_type == 'max_pool':
elif self._aggre_type == 'pool':
graph.srcdata['h'] = F.relu(self.fc_pool(feat_src))
graph.update_all(fn.copy_u('h', 'm'), fn.max('m', 'neigh'))
h_neigh = graph.dstdata['neigh']
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment