Unverified Commit 8275bc29 authored by xiangyuzhi's avatar xiangyuzhi Committed by GitHub
Browse files

[Sparse] Add relabel python API (#6323)

parent 2a715f2f
...@@ -680,6 +680,82 @@ class SparseMatrix: ...@@ -680,6 +680,82 @@ class SparseMatrix:
self.c_sparse_matrix.sample(dim, fanout, ids, replace, bias) self.c_sparse_matrix.sample(dim, fanout, ids, replace, bias)
) )
def compact(
self,
dim: int,
leading_indices: Optional[torch.Tensor] = None,
):
"""Compact sparse matrix by removing rows or columns without non-zero
elements in the sparse matrix and relabeling indices of the dimension.
This function serves a dual purpose: it allows you to reorganize the
indices within a specific dimension (rows or columns) of the sparse
matrix and, if needed, place certain 'leading_indices' at the beginning
of the relabeled dimension.
In the absence of 'leading_indices' (when it's set to `None`), the order
of relabeled indices remains the same as the original order, except that
rows or columns without non-zero elements are removed. When
'leading_indices' are provided, they are positioned at the start of the
relabeled dimension. To be precise, all rows selected by the specified
indices will be remapped from 0 to length(indices) - 1. Rows that are not
selected and contain any non-zero elements will be positioned after those
remapped rows while maintaining their original order.
This function mimics 'dgl.to_block', a method used to compress a sampled
subgraph by eliminating redundant nodes. The 'leading_indices' parameter
replicates the behavior of 'include_dst_in_src' in 'dgl.to_block',
adding destination node information for message passing.
Setting 'leading_indices' to column IDs when relabeling the row
dimension, for example, achieves the same effect as including destination
nodes in source nodes.
Parameters
----------
dim : int
The dimension to relabel. Should be 0 or 1. Use `dim = 0` for rowwise
relabeling and `dim = 1` for columnwise relabeling.
leading_indices : torch.Tensor, optional
An optional tensor containing row or column ids that should be placed
at the beginning of the relabeled dimension.
Returns
-------
Tuple[SparseMatrix, torch.Tensor]
A tuple containing the relabeled sparse matrix and the index mapping
of the relabeled dimension from the new index to the original index.
Examples
--------
>>> indices = torch.tensor([[0, 2],
[1, 2]])
>>> A = dglsp.spmatrix(indices)
>>> print(A.to_dense())
tensor([[0., 1., 0.],
[0., 0., 0.],
[0., 0., 1.]])
Case 1: Compact rows without indices.
>>> B, original_rows = A.compact(dim=0, leading_indices=None)
>>> print(B.to_dense())
tensor([[0., 1., 0.],
[0., 0., 1.]])
>>> print(original_rows)
torch.Tensor([0, 2])
Case 2: Compact rows with indices.
>>> B, original_rows = A.compact(dim=0, leading_indices=[1, 2])
>>> print(B.to_dense())
tensor([[0., 0., 0.],
[0., 0., 1.],
[0., 1., 0.],])
>>> print(original_rows)
torch.Tensor([1, 2, 0])
"""
raise NotImplementedError
def spmatrix( def spmatrix(
indices: torch.Tensor, indices: torch.Tensor,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment